31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.4. RELATIVE ENTROPY OF LEVY PROCESSES 83<br />

uniformly with respect to Q ∈ L r . L<strong>et</strong> ε > 0 and choose u such that ∫ {φ Q >u} νQ (dx) ≤ ε/2 for<br />

every Q ∈ L r . By Proposition 1.7,<br />

∫ ∞<br />

−∞<br />

f(x)ν Pn (dx) →<br />

∫ ∞<br />

−∞<br />

f(x)ν P (dx)<br />

for every continuous boun<strong>de</strong>d function f that is i<strong>de</strong>ntically zero on a neighborhood of zero.<br />

Since the measures ν P and ν Pn<br />

for all n ≥ 1 are finite outsi<strong>de</strong> a neighborhood of zero, we can<br />

choose a compact K such that ν Pn (R \ K) ≤ ε/2u for every n. Th<strong>en</strong><br />

∫<br />

ν Q (R \ K) =<br />

(R\K)∩{φ Q ≤u}<br />

which proves property 1 of Proposition 1.6.<br />

∫<br />

φ Q ν P Q<br />

(dx) +<br />

ν Q (dx) ≤ ε,<br />

(R\K)∩{φ Q >u}<br />

It is easy to check by computing <strong>de</strong>rivatives that for every u > 0, on the s<strong>et</strong> {x : φ Q (x) ≤ u},<br />

(φ Q − 1) 2 ≤ 2u(φ Q log φ Q + 1 − φ Q ).<br />

Therefore, for u suffici<strong>en</strong>tly large and for all Q ∈ L r ,<br />

∫<br />

∣<br />

|x|≤1<br />

x(φ Q − 1)ν P Q (dx) ∣<br />

∫<br />

∣ ∣∣∣∣ ≤<br />

x(φ Q − 1)ν P Q (dx)<br />

∣ |x|≤1, φ Q ≤u<br />

∣<br />

∫|x|≤1, + x(φ Q − 1)ν P Q (dx)<br />

φ Q >u<br />

∣<br />

∫<br />

∫<br />

∫<br />

≤ x 2 ν P Q<br />

(dx) +<br />

(φ Q − 1) 2 ν P Q<br />

(dx) + 2 φ Q ν P Q<br />

(dx)<br />

∫<br />

≤<br />

∫<br />

≤<br />

|x|≤1<br />

|x|≤1<br />

|x|≤1<br />

x 2 ν P Q<br />

(dx) + 2u<br />

|x|≤1, φ Q ≤u<br />

∫ ∞<br />

−∞<br />

φ Q >u<br />

(φ Q log φ Q + 1 − φ Q )ν P Q<br />

(dx) +<br />

4r<br />

T ∞ log u<br />

x 2 ν P Q<br />

(dx) + 3ru<br />

T ∞<br />

. (2.22)<br />

By Proposition 1.6, applied to the sequ<strong>en</strong>ce {P n } n≥1 ,<br />

∫<br />

A Pn + x 2 ν Pn (dx) (2.23)<br />

|x|≤1<br />

is boun<strong>de</strong>d uniformly on n, which implies that the right hand si<strong>de</strong> of (2.22) is boun<strong>de</strong>d uniformly<br />

with respect to Q ∈ L r . From Proposition 1.5, A Q = A P Q<br />

for all Q ∈ L r because for the relative<br />

<strong>en</strong>tropy to be finite, necessarily Q ≪ P Q . From Theorem 2.9 and Proposition 1.5 it follows that<br />

{ ∫ 1<br />

} 2<br />

γ Q − γ P − x(ν Q − ν P )(dx) ≤ 2AP Qr<br />

.<br />

−1<br />

T ∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!