31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66 CHAPTER 2. THE CALIBRATION PROBLEM<br />

By Proposition 1.7, ∫ ∞<br />

−∞ f(x)ν(dx) = lim n→∞<br />

∫ ∞<br />

−∞ f(x)ν n(dx) = 0, which implies that the<br />

jumps of Q are boun<strong>de</strong>d by B.<br />

Define a function g by<br />

⎧<br />

⎨ e x − 1 − h(x) − 1 2<br />

g(x) :=<br />

h2 (x), x ≤ B,<br />

⎩<br />

e B − 1 − h(B) − 1 2 h2 (B), x > B.<br />

Th<strong>en</strong>, by Proposition 1.7 and because Q n satisfies the martingale condition (1.2) for every n,<br />

γ h + A 2 + ∫ ∞<br />

−∞<br />

(e x − 1 − h(x))ν(dx) = γ h + A + ∫ ∞<br />

−∞ h2 (x)ν(dx)<br />

2<br />

= lim<br />

n→∞<br />

which shows that Q also satisfies the condition (1.2).<br />

{γn h + A n + ∫ ∞<br />

−∞ h2 (x)ν n (dx)<br />

+<br />

2<br />

Proof of Theorem 2.1. L<strong>et</strong> {Q n } n≥1 ⊂ M ∩ L B be such that<br />

Condition (2.9) implies that for every n,<br />

∫ ∞<br />

+<br />

lim ‖C M − C Qn ‖ 2<br />

n→∞<br />

w = inf ‖C M − C Q ‖ 2 w<br />

Q∈M∩L B<br />

−∞<br />

∫ ∞<br />

−∞<br />

and ‖C M − C Qn ‖ 2 w ≤ ‖C M − C Q 0<br />

‖ 2 w for all n.<br />

g(x)ν(dx)<br />

g(x)ν n (dx)<br />

}<br />

= 0,<br />

|S 0 − C Qn (T 0 , K 0 )| ≥ |S 0 − C M (T 0 , K 0 )| − |C M (T 0 , K 0 ) − C Qn (T 0 , K 0 )|<br />

≥ |S 0 − C M (T 0 , K 0 )| − ‖C M − C Qn ‖ w<br />

√<br />

w0<br />

≥ |S 0 − C M (T 0 , K 0 )| − ‖C M − C Q 0<br />

‖ w<br />

√<br />

w0<br />

> 0.<br />

Therefore, by Lemmas 2.3 and 2.4, there exists a subsequ<strong>en</strong>ce {Q nm } m≥1 of {Q n } n≥1 and<br />

Q ∗ ∈ M ∩ L B such that Q nm ⇒ Q. By Lemma 2.2,<br />

‖C M − C Q∗ ‖ 2 w = lim ‖C M − C Qnm ‖ 2<br />

m→∞<br />

w = inf ‖C M − C Q ‖ 2 w,<br />

Q∈M∩L B<br />

which shows that Q ∗ is a solution of the least squares calibration problem (2.4).<br />

2.1.3 Continuity<br />

Mark<strong>et</strong> option prices are typically <strong>de</strong>fined up to a bid-ask spread and the close prices used for<br />

calibration may therefore contain numerical errors. If the solution of the calibration problem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!