31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

98 CHAPTER 3. NUMERICAL IMPLEMENTATION<br />

Lemma 2.11 <strong>en</strong>tails that<br />

I(Q, P ) ≤ lim inf<br />

n I(Q n, P n ), (3.4)<br />

and since, by Lemma 2.2, the pricing error is weakly continuous, we also have<br />

‖C Q − C M ‖ 2 w + αI(Q, P ) ≤ lim inf<br />

n {‖CQn − C M ‖ 2 w + αI(Q n , P n )}. (3.5)<br />

L<strong>et</strong> φ ∈ C b (Ω) with φ ≥ 0 and E P [φ] = 1. Without loss of g<strong>en</strong>erality we can suppose that for<br />

every n, E Pn [φ] > 0 and therefore Q ′ n, <strong>de</strong>fined by Q ′ n(B) := EPn [φ1 B ]<br />

, is a probability measure<br />

E Pn [φ]<br />

on Ω. Clearly, Q ′ n converges weakly to Q ′ <strong>de</strong>fined by Q ′ (B) := E P [φ1 B ]. Therefore, by Lemma<br />

2.2,<br />

Moreover,<br />

lim<br />

n<br />

I(Q ′ n|P n ) = lim<br />

n<br />

∫<br />

Ω<br />

lim<br />

n<br />

‖C Q′ n<br />

− C M ‖ 2 w = ‖C Q′ − C M ‖ 2 w. (3.6)<br />

φ<br />

E Pn [φ] log<br />

= lim<br />

n<br />

1<br />

E Pn [φ]<br />

φ<br />

E Pn [φ] dP n<br />

∫<br />

φ log φdP n − lim<br />

n<br />

Ω<br />

∫ ∫<br />

log φdP n = φ log φdP. (3.7)<br />

Ω<br />

Ω<br />

For the rest of this proof, for every φ ∈ L 1 (P ) with φ ≥ 0 and E P [φ] = 1 l<strong>et</strong> Q φ <strong>de</strong>note the<br />

probability measure on Ω, <strong>de</strong>fined by Q φ (B) := E P [φ1 B ] for every B ∈ F. Using (3.5–3.7) and<br />

the optimality of Q n , we obtain that for every φ ∈ C b (Ω) with φ ≥ 0 and E P [φ] = 1,<br />

‖C Q − C M ‖ 2 w + I(Q, P ) ≤ ‖C Q φ<br />

− C M ‖ 2 w + I(Q φ |P ) (3.8)<br />

To compl<strong>et</strong>e the proof of the theorem, we must g<strong>en</strong>eralize this inequality to all φ ∈ L 1 (P ) with<br />

φ ≥ 0 and E P [φ] = 1.<br />

First, l<strong>et</strong> φ ∈ L 1 (P ) ∩ L ∞ (P ) with φ ≥ 0 and E P [φ] = 1. Th<strong>en</strong> there exists a sequ<strong>en</strong>ce<br />

{φ n } ⊂ C b (Ω) such that φ n → φ in L 1 (P ), φ n ≥ 0 for all n and φ n are boun<strong>de</strong>d in L ∞ norm<br />

uniformly on n. Moreover, φ ′ n := φ n /E P [φ n ] also belongs to L 1 (P ), is positive and φ ′ n<br />

because by the triangle inequality,<br />

‖φ ′ n − φ‖ L 1 ≤<br />

1 (<br />

‖φn<br />

E P − φ‖<br />

[φ n ]<br />

L 1 + ‖φ − φE P )<br />

[φ n ]‖ L 1 −−−→ 0.<br />

n→∞<br />

In addition, it is easy to see that Q φ ′ n<br />

⇒ Q φ . Therefore,<br />

L 1 (P )<br />

−−−→ φ<br />

lim<br />

n<br />

‖C Q φ ′ n − C M ‖ 2 w = ‖C Q φ<br />

− C M ‖ 2 w

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!