31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.3. INCREASING FUNCTIONS 143<br />

for x 1 , . . . , x d ∈ ¯R. F is th<strong>en</strong> clearly increasing because for every a, b ∈ ¯R d with a ≤ b,<br />

V F (|a, b|) = P [X ∈ (a, b]] (4.6)<br />

It is groun<strong>de</strong>d because F (x 1 , . . . , x d ) = 0 if x k = −∞ for some k, and the margins of F are the<br />

distribution functions of the margins of X: for example, F 1 (x) = F (x, ∞, . . . , ∞) = P [X 1 ≤ x].<br />

The following technical lemma will be useful in the sequel.<br />

Lemma 4.3. For each k, l<strong>et</strong> S k ⊂ ¯R be such that inf S k ∈ S k and l<strong>et</strong> F, H : S 1 × · · · × S d → ¯R<br />

be d-increasing and groun<strong>de</strong>d. Th<strong>en</strong> their product F H is d-increasing and groun<strong>de</strong>d.<br />

Proof. We will prove this lemma by induction on d. The product of two increasing groun<strong>de</strong>d<br />

functions on ¯R is clearly increasing and groun<strong>de</strong>d. Suppose d ≥ 2, and for each k l<strong>et</strong> a k , b k ∈ S k<br />

with a k ≤ b k . Consi<strong>de</strong>r the function<br />

˜F (u 2 , . . . , u d ) := F (b 1 , u 2 , . . . , u d )H(b 1 , u 2 , . . . , u d ) − F (a 1 , u 2 , . . . , u d )H(a 1 , u 2 , . . . , u d )<br />

= H(a 1 , u 2 , . . . , u d )[F (b 1 , u 2 , . . . , u d ) − F (a 1 , u 2 , . . . , u d )]<br />

+ F (b 1 , u 2 , . . . , u d )[H(b 1 , u 2 , . . . , u d ) − H(a 1 , u 2 , . . . , u d )]<br />

Since H is groun<strong>de</strong>d,<br />

V H(a1 ,∗)(|a 2 , b 2 | × · · · × |a d , b d |) = V H (|0, a 1 | × |a 2 , b 2 | × · · · × |a d , b d |) ≥ 0,<br />

V H(b1 ,∗)−H(a 1 ,∗)(|a 2 , b 2 | × · · · × |a d , b d |) = V H (|a 1 , b 1 | × |a 2 , b 2 | × · · · × |a d , b d |) ≥ 0,<br />

and the same is true for F . Therefore ˜F is increasing by the induction hypothesis. Since<br />

V F H (|a 1 , b 1 | × · · · × |a d , b d |) = V ˜F<br />

(|a 2 , b 2 | × · · · × |a d , b d |),<br />

this finishes the proof of the lemma.<br />

To <strong>de</strong>velop the theory of Lévy copulas for g<strong>en</strong>eral Lévy processes, we will need to <strong>de</strong>fine the<br />

notion of margins for a function that is not groun<strong>de</strong>d. The following example gives an intuition<br />

of how this can be done.<br />

Example 4.4. Consi<strong>de</strong>r the following “alternative” <strong>de</strong>finition of a distribution function of a<br />

random vector X:<br />

d∏<br />

˜F (x 1 , . . . , x d ) := P [X 1 ∈ (x 1 ∧ 0, x 1 ∨ 0]; . . . ; X d ∈ (x d ∧ 0, x d ∨ 0]] sgn x i (4.7)<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!