31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

144 CHAPTER 4. DEPENDENCE OF LEVY PROCESSES<br />

for x 1 , . . . x d ∈ ¯R. This function satisfies Equation (4.6) and can therefore play the role of a<br />

distribution function. However, the margins of ˜F (e.g. the distribution functions computed<br />

using Equation (4.7) for the compon<strong>en</strong>ts of X) are no longer giv<strong>en</strong> by (4.5). It can be shown<br />

that<br />

˜F I ((x i ) i∈I ) := P [X i ∈ (x i ∧ 0, x i ∨ 0], i ∈ I] ∏ i∈I<br />

sgn x i<br />

=<br />

∑<br />

(x i ) i∈I c ∈{−∞,∞} |Ic |<br />

˜F (x 1 , . . . , x d ) ∏ i∈I c sgn x i .<br />

The above example motivates the following <strong>de</strong>finitions.<br />

notion of “increasing and groun<strong>de</strong>d” function.<br />

First, we need to g<strong>en</strong>eralize the<br />

Definition 4.9 (Volume function). L<strong>et</strong> S k ⊂ ¯R for k = 1, . . . , d. A function F : S 1 × · · ·×S d<br />

is called volume function if it is d-increasing and there exists x ∗ ∈ S 1 × · · · × S d such that<br />

F (x 1 , . . . , x d ) = 0 wh<strong>en</strong>ever x k = x ∗ k<br />

for some k.<br />

The term “volume function” is due to the fact that an increasing function is a volume<br />

function if and only if there exists x ∗ ∈ S 1 × · · · × S d such that<br />

d∏<br />

F (x 1 , . . . , x d ) = V F (|x 1 ∧ x ∗ 1, x 1 ∨ x ∗ 1| × · · · × |x d ∧ x ∗ d , x d ∨ x ∗ d |) sgn(x i − x ∗ i )<br />

for all x ∈ S 1 ×· · ·×S d . Every increasing groun<strong>de</strong>d function is a volume function. The function<br />

˜F , <strong>de</strong>fined in Example 4.4 is a volume function but is not groun<strong>de</strong>d.<br />

Definition 4.10 (Margins of a volume function). L<strong>et</strong> S k ⊂ ¯R for k = 1, . . . , d and l<strong>et</strong><br />

F : S 1 × · · · × S d → ¯R be a volume function. Th<strong>en</strong> for I ⊂ {1, . . . , d} nonempty, the I-margin<br />

of F is a function F I : ∏ i∈I S i → ¯R <strong>de</strong>fined by<br />

( )<br />

∏<br />

F I ((x i ) i∈I ) := sgn(x i − x ∗ i )<br />

i∈I<br />

∑<br />

× sup<br />

(−1) N((x i) i∈I c ) F (x 1 , . . . , x d ), (4.8)<br />

a i ,b i ∈S i :i∈I c<br />

(x i ) i∈I c ∈ ∏<br />

j∈I c{a j,b j }<br />

where N((x i ) i∈I c) = #{i ∈ I c : x i = a i }.<br />

In particular, for d = 2 we have F 1 (x) = sgn(x − x ∗ ) sup y1 ,y 2 ∈S 2<br />

{F (x, y 2 ) − F (x, y 1 )}.<br />

Equation (4.8) looks so complicated because it applies without modification to all cases that<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!