31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.3. INCREASING FUNCTIONS 145<br />

are of interest to us: distribution functions, copulas, Lévy copulas with closed or op<strong>en</strong> domains.<br />

In particular cases we will obtain simplifications that are easier to work with. Using the F-<br />

volume notation, Equation (4.8) can be rewritt<strong>en</strong> as follows:<br />

⎛ ⎧<br />

⎞<br />

( )<br />

∏<br />

F I ((x i ) i∈I ) = sgn(x i − x ∗ ⎜<br />

d∏<br />

⎪⎨ |x i ∧ x ∗ i , x i ∨ x ∗ i |, i ∈ I ⎟<br />

i ) sup V F ⎝<br />

⎠ .<br />

i∈I<br />

a i ,b i ∈S i :a i ≤b i ,i∈I c i=1<br />

⎪⎩ |a i , b i |, i ∈ I c<br />

(4.9)<br />

Wh<strong>en</strong> F satisfies the conditions of Definition 4.8, since F is d-increasing, the sup is achieved<br />

wh<strong>en</strong> for every i ∈ I c , a i = inf S i and b i = sup S i . Therefore, in this case the above formula<br />

yields F I ((x i ) i∈I ) = F (x 1 , . . . , x d )| xi =sup S i , i∈I c<br />

and the two <strong>de</strong>finitions coinci<strong>de</strong>.<br />

The following important property of increasing functions will be useful in the sequel.<br />

Lemma 4.4. L<strong>et</strong> S k ⊂ ¯R for k = 1, . . . , d and l<strong>et</strong> F : S 1 × · · · × S d → ¯R be a volume function.<br />

L<strong>et</strong> (x 1 , . . . , x d ) and (y 1 , . . . , y d ) be any points in Dom F . Th<strong>en</strong><br />

|F (x 1 , . . . , x d ) − F (y 1 , . . . , y d )| ≤<br />

Proof. From the triangle inequality,<br />

d∑<br />

|F k (x k ) − F k (y k )|. (4.10)<br />

k=1<br />

|F (x 1 , . . . , x d ) − F (y 1 , . . . , y d )| ≤ |F (x 1 , . . . , x d ) − F (y 1 , x 2 . . . , x d )| + . . .<br />

+ |F (y 1 , . . . , y d−1 , x d ) − F (y 1 , . . . , y d )|,<br />

h<strong>en</strong>ce it suffices to prove that<br />

|F (x 1 , . . . , x d ) − F (y 1 , x 2 . . . , x d )| ≤ |F 1 (x 1 ) − F 1 (y 1 )|. (4.11)<br />

Without loss of g<strong>en</strong>erality suppose that x 1 ≥ y 1 ≥ x ∗ 1 and that x k ≥ x ∗ k<br />

B := |x ∗ 2 , x 2| × · · · × |x ∗ d , x d|. Th<strong>en</strong><br />

for k = 2, . . . , d and l<strong>et</strong><br />

F (x 1 , . . . , x d ) − F (y 1 , x 2 . . . , x d ) = V F (|y 1 , x 1 | × B). (4.12)<br />

Moreover, for all x ≥ x ∗ 1 ,<br />

F 1 (x) =<br />

sup V F (|x ∗ 1, x| × |a 2 , b 2 | × · · · × |a d , b d |).<br />

a i ,b i ∈S i :a i ≤b i ,i=2,...,d

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!