31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

174 CHAPTER 5. APPLICATIONS OF LEVY COPULAS<br />

Example 5.2. L<strong>et</strong><br />

⎧<br />

⎨<br />

g (α 1,...,α d ) 1 for α 1 = · · · = α d<br />

(u) =<br />

⎩<br />

0 otherwise.<br />

Th<strong>en</strong> the Lévy copula F in Theorem 5.3 satisfies F (u 1 , . . . , u d ) = 0 if u i u j < 0 for some i, j.<br />

This means that the Lévy measure is supported by the positive and the negative orthant: either<br />

all compon<strong>en</strong>ts of the process jump up or all compon<strong>en</strong>ts jump down.<br />

5.2 Simulation of multidim<strong>en</strong>sional <strong>de</strong>p<strong>en</strong><strong>de</strong>nt Lévy processes<br />

Lévy copulas turn out to be a conv<strong>en</strong>i<strong>en</strong>t tool for simulating multidim<strong>en</strong>sional Lévy processes<br />

with specified <strong>de</strong>p<strong>en</strong><strong>de</strong>nce. In this section we first give the necessary <strong>de</strong>finitions and two auxiliary<br />

lemmas and th<strong>en</strong> prove two theorems which show how multidim<strong>en</strong>sional Lévy processes<br />

with <strong>de</strong>p<strong>en</strong><strong>de</strong>nce structures giv<strong>en</strong> by Lévy copulas can be simulated in the finite variation case<br />

(Theorem 5.6) and in the infinite variation case (Theorem 5.7).<br />

To simulate a Lévy process {X t } 0≤t≤1 on R d with Lévy measure ν, we will first simulate a<br />

Poisson random measure on [0, 1] × R d with int<strong>en</strong>sity measure λ [0,1] ⊗ ν, where λ <strong>de</strong>notes the<br />

Lebesgue measure. The Lévy process can th<strong>en</strong> be constructed via the Lévy-Itô <strong>de</strong>composition.<br />

L<strong>et</strong> F be a Lévy copula on (−∞, ∞] d such that for every I ∈ {1, . . . , d} nonempty,<br />

lim F (x 1, . . . , x d ) = F (x 1 , . . . , x d )| (xi ) i∈I =∞. (5.5)<br />

(x i ) i∈I →∞<br />

This Lévy copula <strong>de</strong>fines a positive measure µ on R d with Lebesgue margins such that for each<br />

a, b ∈ R d with a ≤ b,<br />

V F (|a, b|) = µ((a, b]). (5.6)<br />

For a one-dim<strong>en</strong>sional tail integral U, the inverse tail integral U (−1) was <strong>de</strong>fined in Equation<br />

(4.25). In the sequel we will need the following technical lemma.<br />

Lemma 5.4. L<strong>et</strong> ν be a Lévy measure on R d with marginal tail integrals U i , i = 1, . . . , d, and<br />

Lévy copula F on (−∞, ∞] d , satisfying (5.5), l<strong>et</strong> µ be <strong>de</strong>fined by (5.6) and l<strong>et</strong><br />

Th<strong>en</strong> ν is the image measure of µ by f.<br />

f : (u 1 , . . . , u d ) ↦→ (U (−1)<br />

1 (u 1 ), . . . , U (−1)<br />

d<br />

(u d )).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!