31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.4. PRICING EUROPEAN OPTIONS 53<br />

By the first part of Lemma 1.10,<br />

∫<br />

1 ∞<br />

|Φ T (v − i)|<br />

2π L/2 v 2 dv ≤ 1 ∫ ∞<br />

dv<br />

2π L/2 v 2 e−T Av2 /2 = 1 ∫ ∞<br />

4π L 2 /4<br />

≤ 1<br />

4π<br />

dz Az/2<br />

e−T<br />

z3/2 ∫<br />

8 ∞<br />

L 3 dze −T Az/2 =<br />

L 2 /4<br />

4<br />

πT AL 3 e− L2 AT<br />

8 ,<br />

and since a similar bound can be obtained for Φ Σ T<br />

, this proves the first part of the proposition.<br />

To prove the second statem<strong>en</strong>t, observe that from the second part of Lemma 1.10,<br />

∫<br />

1 ∞<br />

2π L/2<br />

|Φ T (v − i)|<br />

v 2 dv ≤ |Φ ∫<br />

T (L/2 − i)| ∞<br />

dv<br />

2π L/2<br />

v 2 = |Φ T (L/2 − i)|<br />

.<br />

πL<br />

To compute a bound for the discr<strong>et</strong>ization (sampling) error ε D in Equation (1.28), we <strong>de</strong>fine<br />

constants C k , k ≥ 1 by<br />

⎧<br />

⎪⎨<br />

C k =<br />

⎪⎩<br />

|Φ (k)<br />

T<br />

(−i)|, k is ev<strong>en</strong>,<br />

|Φ (k+1)<br />

T<br />

(−i)| k<br />

k+1 , k is odd,<br />

(1.31)<br />

and start by proving a technical lemma.<br />

Lemma 1.12. L<strong>et</strong> {X t } t≥0 be a real-valued Lévy process with tripl<strong>et</strong> (A, ν, γ) and characteristic<br />

function Φ T , such that the condition (1.23) is satisfied. L<strong>et</strong> Γ T (v) := Φ T (v−i)−1<br />

v<br />

. Th<strong>en</strong> for all<br />

n ≥ 0,<br />

|Γ (n)<br />

T (v)| ≤ C n+1<br />

n + 1<br />

∀ v ∈ R<br />

Proof. Un<strong>de</strong>r the condition (1.23), for all n ≥ 1, E[|X T | n e X T<br />

] < ∞. Therefore, by Lebesgue’s<br />

dominated converg<strong>en</strong>ce theorem, for all n ≥ 1,<br />

Φ (n)<br />

T<br />

∫ ∞<br />

(v − i) = (ix) n e i(v−i)x µ T (dx),<br />

where µ T is the probability distribution of X T . For ev<strong>en</strong> n > 1 this implies:<br />

−∞<br />

∫ ∞<br />

|Φ (n)<br />

T<br />

(v − i)| ≤ x n e x µ T (dx) = C n ,<br />

−∞<br />

and for odd n ≥ 1, using J<strong>en</strong>s<strong>en</strong>’s inequality for the probability measure ˜µ T = e x µ T yields:<br />

∫ ∞<br />

(∫ ∞<br />

) n<br />

|Φ (n)<br />

T<br />

(v − i)| ≤ |x| n e x µ T (dx) ≤ |x| n+1 e x n+1<br />

µ T (dx) = Cn ,<br />

−∞<br />

−∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!