31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.6. EXAMPLES OF LEVY COPULAS 163<br />

Conversely, if F ‖ | [0,∞] d is a Lévy copula of a spectrally positive Lévy process X, th<strong>en</strong> the<br />

Lévy measure of X is supported by an or<strong>de</strong>red subs<strong>et</strong> of R d +. If, in addition, the tail integrals<br />

U i of X i are continuous and satisfy lim x↓0 U i (x) = ∞, i = 1, . . . , d, th<strong>en</strong> the jumps of X are<br />

compl<strong>et</strong>ely <strong>de</strong>p<strong>en</strong><strong>de</strong>nt.<br />

Lévy copulas provi<strong>de</strong> a simple characterization of possible <strong>de</strong>p<strong>en</strong><strong>de</strong>nce patterns of multidim<strong>en</strong>sional<br />

stable processes.<br />

Theorem 4.13. L<strong>et</strong> X := (X 1 , . . . , X d ) be a Lévy process on R d and l<strong>et</strong> α ∈ (0, 2). X is<br />

α-stable if and only if its compon<strong>en</strong>ts X 1 , . . . , X d are α-stable and it has a Lévy copula F that<br />

is a homog<strong>en</strong>eous function of or<strong>de</strong>r 1:<br />

∀r > 0, ∀u 1 , . . . , u d , F (ru 1 , . . . , ru d ) = rF (u 1 , . . . , u d ). (4.32)<br />

Proof. The “only if” part. L<strong>et</strong> X be α-stable. For each i = 1, . . . , d, three situations are<br />

possible: Ran U i = (−∞, 0] (only negative jumps), Ran U i = [0, ∞) (only positive jumps) or<br />

Ran U i = (−∞, 0) ∪ (0, ∞) (jumps of both signs). We exclu<strong>de</strong> the trivial case of a compon<strong>en</strong>t<br />

having no jumps at all. L<strong>et</strong> I 1 = {i : Ran U i = (−∞, 0]} and I 2 = {i : Ran U i = [0, ∞)} and<br />

for each i, l<strong>et</strong> ¯X i be a copy of X i , in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt from X and from ¯X k for k ≠ i. Define a Lévy<br />

process ˜X on R d by<br />

⎧<br />

⎨ X i , i /∈ I 1 ∪ I 2 ,<br />

˜X i =<br />

⎩<br />

X i − ¯X i , i ∈ I 1 ∪ I 2 .<br />

L<strong>et</strong> ˜ν be the Lévy measure of ˜X, Ũ be its tail integral and ˜F be its Lévy copula (it exists by<br />

Theorem 4.8). The process ˜X is clearly α-stable and each compon<strong>en</strong>t of this process has jumps<br />

of both signs (Ran Ũi = R \ {0}). By Theorem 14.3 in [87], for every B ∈ B(R d \ {0}) and for<br />

every r > 0,<br />

˜ν(B) = r α˜ν(rB). (4.33)<br />

Therefore, for every I ⊂ {1, . . . , d} nonempty and for every (x i ) i∈I ∈ (R \ {0}) |I| ,<br />

Ũ I ((x i ) i∈I ) = r α Ũ I ((rx i ) i∈I ). (4.34)<br />

By Theorem 4.8 this implies that for all (u 1 , . . . , u d ) ∈ (R \ {0}) d ,<br />

˜F I ((u i ) i∈I ) = r −1 ˜F I ((ru i ) i∈I ),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!