26.07.2013 Views

Introduktion til den specielle relativitetsteori - Niels Bohr Institutet

Introduktion til den specielle relativitetsteori - Niels Bohr Institutet

Introduktion til den specielle relativitetsteori - Niels Bohr Institutet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5 Rumti<strong>den</strong> og fire-vektorer<br />

der en rotation omkring begyndelsespunktet ændres komponenterne ifølge en lineær,<br />

homogen transformation af formen<br />

∆x ′ = α11∆x + α12∆y + α13∆z<br />

∆y ′ = α21∆x + α22∆y + α23∆z<br />

∆z ′ = α31∆x + α32∆y + α33∆z,<br />

hvor α’erne er funktioner af vinklerne, der bestemmer rotationen. Vi kan nu definere<br />

Definition af en 3-vektor ved følgende sætning: Enhver størrelse med tre komponenter (a1, a2, a3),<br />

3-vektor som transformerer p˚a samme m˚ade som forskydningsvektoren (∆x, ∆y, ∆z) mellem to<br />

punkter i rummet, siges at udgøre en 3-vektor.<br />

S˚afremt a = (a1, a2, a3) og b = (b1, b2, b3) begge transformerer som (∆x, ∆y, ∆z), vil<br />

summen a + b = (a1 + b1, a2 + b2, a3 + b3) som følge af lineariteten af (5.6) gøre det<br />

samme. Summen af to vektorer er derfor en vektor. Tilsvarende følger det umiddelbart<br />

af (5.6), at hvis k er en skalar invariant (ofte blot kaldet en “skalar” eller en “invariant”) –<br />

alts˚a et tal, som er uafhængig af koordinatsystemet – s˚a er ogs˚a ka ≡ (ka1, ka2, ka3) en<br />

vektor.<br />

S˚afremt r = (x, y, z) er et punkt p˚a en kurve i rummet, og hver af koordinaterne<br />

udtrykkes som funktion af kurvelæng<strong>den</strong> l, s˚a er “enheds-tangenten”<br />

t = dr<br />

dl =<br />

<br />

dx dy dz<br />

, , (5.7)<br />

dl dl dl<br />

en vektor. For hver af komponenterne har vi nemlig<br />

dri<br />

dl<br />

∆ri<br />

= lim<br />

∆l→0 ∆l ,<br />

(5.6)<br />

hvor ∆ri er komponenterne af en vektor og ∆l er en skalar invariant. Kvotienten mellem<br />

disse to giver dermed ifølge ovennævnte argumentation komponenterne af en ny vektor,<br />

og grænseovergangen ændrer intet ved dette forhold. Betragter vi nu en partikelbevægelse,<br />

hvor koordinaterne er funktioner af ti<strong>den</strong> t, ser vi ved lignende argumenter,<br />

at hastighe<strong>den</strong><br />

u = dr<br />

dt =<br />

<br />

dx dy dz<br />

, ,<br />

dt dt dt<br />

(5.8)<br />

er en vektor. Generelt indser vi, at enhver differentiation af en vektor med hensyn <strong>til</strong> en<br />

skalar invariant giver en ny vektor. S˚aledes er ogs˚a accelerationen a = du/dt = (dux/dt,<br />

duy/dt, duz/dt) en vektor. Multiplicerer vi dernæst henholdsvis u og a med massen<br />

m, som jo er en skalar, f˚ar vi to nye vektorer, nemlig impulsen, p = mu, og kraften,<br />

F = ma.<br />

Til enhver vektor a = (a1, a2, a3) hører en vigtig skalar, nemlig <strong>den</strong>s længde, som vi<br />

betegner |a| eller simpelthen a:<br />

78<br />

a 2 = a 2 1 + a 2 2 + a 2 3, a ≥ 0. (5.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!