28.05.2014 Views

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

mitigate seismic failure of rectangular RC bridge columns due to a lack of lateral confinement, improper<br />

lap-splice or inadequate shear capacity. In addition, rectangular steel jacketing can effectively prevent a<br />

shear-deficient column from shear failure; however, it is not effective in improving the flexural ductility.<br />

500<br />

250<br />

BMR-3<br />

Vmax=290kN<br />

500<br />

250<br />

SR-1<br />

Vmax=456kN<br />

Force(kN)<br />

0<br />

-250<br />

Force(kN)<br />

0<br />

-250<br />

Force(kN)<br />

Force(kN)<br />

Force(kN)<br />

-500<br />

500<br />

250<br />

0<br />

-250<br />

-500<br />

800<br />

400<br />

0<br />

-400<br />

-800<br />

800<br />

400<br />

0<br />

-400<br />

-800<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

SR-2<br />

Vmax=400kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

BMRL100<br />

P=0.15f'cAg<br />

=1400kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

SRL2<br />

P=0.15f'cAg<br />

=1400kN<br />

Vmax=- 368kN<br />

Vmax=602kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

Force(kN)<br />

Force(kN)<br />

Force(kN)<br />

-500<br />

500<br />

250<br />

0<br />

-250<br />

-500<br />

800<br />

400<br />

0<br />

-400<br />

-800<br />

800<br />

400<br />

0<br />

-400<br />

-800<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

SR-3<br />

Vmax=418kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

SRL1<br />

P=0.15f'cAg<br />

=1400kN<br />

Vmax= - 622kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

BMRL100<br />

SRL1<br />

SRL2<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

Force(kN)<br />

Force(kN)<br />

Force(kN)<br />

500<br />

250<br />

0<br />

-250<br />

SR-4<br />

Vmax=423kN<br />

-500<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

1200<br />

BMRS<br />

600<br />

P=0.15f'cAg<br />

=1400kN<br />

0<br />

-600<br />

-1200<br />

1200<br />

600<br />

0<br />

-600<br />

-1200<br />

SRS2<br />

P=0.15f'cAg<br />

=1400kN<br />

Vmax=- 722kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

Vmax= 982kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

Force(kN)<br />

Force(kN)<br />

Force(kN)<br />

500<br />

250<br />

0<br />

-250<br />

-500<br />

1200<br />

600<br />

0<br />

-600<br />

-1200<br />

1200<br />

600<br />

0<br />

-600<br />

-1200<br />

P=0.15f'cAg<br />

=1400kN<br />

BMR-3<br />

SR-1<br />

SR-2<br />

SR-3<br />

SR-4<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(% radian)<br />

SRS1<br />

P=0.15f'cAg<br />

=1400kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

BMRS<br />

SRS1<br />

SRS2<br />

FRS<br />

Figure 1 Hysteresis loop of the retrofitted Rectangular RC columns using steel Jacket<br />

Vmax= 1086kN<br />

-8 -6 -4 -2 0 2 4 6 8<br />

Drift Ratio(%)<br />

800<br />

400<br />

BMR2<br />

400<br />

BMR3<br />

600<br />

BMRS<br />

400<br />

BMRL100<br />

400<br />

200<br />

200<br />

200<br />

200<br />

0<br />

0<br />

0<br />

0<br />

-200<br />

-200<br />

-200<br />

-200<br />

-400<br />

-400<br />

-400<br />

-600<br />

-400<br />

-800<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

1000<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

400<br />

FR1<br />

400<br />

FR2<br />

750<br />

FRS<br />

400<br />

FRL100<br />

200<br />

200<br />

500<br />

200<br />

250<br />

0<br />

0<br />

0<br />

0<br />

-250<br />

-200<br />

-200<br />

-200<br />

-500<br />

-400<br />

-400<br />

-750<br />

-400<br />

-1000<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

-200 -100 0 100 200<br />

Displacement(mm)<br />

Figure 2 Hysteresis loop of the retrofitted Rectangular RC columns using FRP Jacket<br />

Test results for Fig. 2 show that failure of the flexural type specimen under larger axial load will result in<br />

speeding up the degradation of strength and energy dissipation capacity. In addition, standard hoop<br />

arrangements can gain better confinement than the double-U shaped alternation arrangement used in many<br />

existing bridges. For shear failure mode specimens, specimen retrofitted by wrapping FRP shows great<br />

performance in improving shear strength, and transfers the failure mode to flexural-shear type. For lap spliced<br />

-108-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!