28.05.2014 Views

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Acceleration (g)<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Simulated<br />

Initial<br />

Sa (g)<br />

4<br />

3<br />

2<br />

1<br />

Response<br />

Initial<br />

Code<br />

-1<br />

0 10 20 30 40 50 60 70 80 90<br />

Time (sec)<br />

Figure 11 Seismic wave and response spectrum of the artificial ground acceleration for pseudo-dynamic test<br />

Test Results and Conclusions<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Period (sec)<br />

Figures 12 to 15 present the failure modes and hysteresis curves of column P3, P4, and P2, respectively. Though<br />

given different boundary conditions and different detected material strengths, three columns demonstrate similar<br />

flexural failure mode, especially the backbone curve can be simplified as a bi-linear curve. <strong>The</strong> maximum lateral<br />

force is around 1000 kN, and the displacement ductility can reach 5.0. Besides, for each column, it is due to<br />

large spacing of 20cm of lateral reinforcement, the longitudinal reinforcements were buckled and large cover<br />

concrete blocks were spall off during the tests. Moreover, the lap splice length of lateral reinforcement is<br />

insufficient and lacks of seismic hook, leading to separation of lateral reinforcement observed at some particular<br />

heights in the plastic hinge zone. However, the axial load obtained from the design drawing and calibrated by<br />

the system identification is 291tonf, a relative small value about 0.04-0.05 f’cAg, as a result to explain why the<br />

bridge column performed ductile behaviour, compared to the conventional axial load of 0.15f’cAg on the<br />

reduced-size columns in the lab. In addition, the test results are not sensitive to the scouring of caisson<br />

foundation, since the geological condition is gavel. Figures 12 to 14 also show the analytical results, both from<br />

pushover analyses and cyclic loading analyses, by using the program SERCB for Bridge, developed by NCREE<br />

in 2010. This program has been used as a standard tool in current seismic evaluation and retrofitting program in<br />

provincial bridges in Taiwan since 2009. <strong>The</strong> analytical results are agreed with the experimental result very well.<br />

Based on the results, it is suggested to utilize Mander model for confined concrete model and TAKEDA<br />

hysteresis model with an adequate plastic hinge length proposed by Priestley, so that to simulate a<br />

flexural-failure dominated column if strength degradation and stiffness reduction are not obvious.<br />

Drift ratio (%)<br />

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6<br />

Drift ratio (%)<br />

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6<br />

1250<br />

125<br />

1500<br />

150<br />

1000<br />

P3 COLUMN<br />

100<br />

1200<br />

P3 COLUMN<br />

Experimental result<br />

120<br />

750<br />

75<br />

900<br />

Pushover curve<br />

90<br />

500<br />

50<br />

600<br />

Hyeteresis loop<br />

60<br />

Lateral Force (kN)<br />

250<br />

0<br />

-250<br />

PULL<br />

PUSH<br />

25<br />

0<br />

-25<br />

Laterl force (tonf)<br />

Lateral Force (kN)<br />

300<br />

0<br />

-300<br />

PULL<br />

PUSH<br />

30<br />

0<br />

-30<br />

Laterl force (tonf)<br />

-500<br />

-50<br />

-600<br />

-60<br />

-750<br />

-75<br />

-900<br />

-90<br />

-1000<br />

-100<br />

-1200<br />

-120<br />

-1250<br />

-125<br />

-1500<br />

-150<br />

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600<br />

Lateral Displacement (mm)<br />

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600<br />

Lateral Displacement (mm)<br />

(a) failure mode (b) hysteresis loop (c) analytical results<br />

Figure 12 Experimental and analysis results of P3 column<br />

Drift ratio (%)<br />

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6<br />

Drift ratio (%)<br />

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6<br />

1250<br />

125<br />

1500<br />

150<br />

1000<br />

P4 COLUMN<br />

100<br />

1200<br />

P4 COLUMN<br />

Experimental result<br />

120<br />

750<br />

75<br />

900<br />

Pushover curve<br />

90<br />

500<br />

50<br />

600<br />

Hyeteresis loop<br />

60<br />

Lateral Force (kN)<br />

250<br />

0<br />

-250<br />

PULL<br />

PUSH<br />

25<br />

0<br />

-25<br />

Laterl force (tonf)<br />

Lateral Force (kN)<br />

300<br />

0<br />

-300<br />

PULL<br />

PUSH<br />

30<br />

0<br />

-30<br />

Laterl force (tonf)<br />

-500<br />

-50<br />

-600<br />

-60<br />

-750<br />

-75<br />

-900<br />

-90<br />

-1000<br />

-100<br />

-1200<br />

-120<br />

-1250<br />

-125<br />

-1500<br />

-150<br />

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600<br />

Lateral Displacement (mm)<br />

-600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600<br />

Lateral Displacement (mm)<br />

(a) failure mode (b)hysteresis loop (c) analytical results<br />

Figure 13 Experimental and analysis results of P4 column<br />

-115-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!