28.05.2014 Views

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

r - The Hong Kong Polytechnic University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Table 1 (Contd.) Test and predicted flexural debonding moment<br />

Reference Specimen M e ε e M p* /M e M p** /M e M Oeh /M e M T-Y /M e<br />

(kNm) (µε) (kNm) (kNm) (kNm) (kNm)<br />

Oehlers (1992) 7/2/* 13.5 - 0.9 1.1 0.8 1.0<br />

8/2/* 12.9 - 0.9 1.0 0.7 0.9<br />

Yao & Teng (2007) CS-A 12.5 1158 1.3 1.4 4.9 1.2<br />

CS-L1-A 17.0 2425 1.3 1.3 6.6 1.0<br />

CS-L3-A 13.5 919 1.1 1.2 4.0 1.0<br />

CS-W50-A 13.8 1689 1.7 1.5 3.7 1.1<br />

CS-W100-A 13.3 1038 1.4 1.3 4.3 1.1<br />

CP-A 11.4 404 1.2 1.4 4.1 1.1<br />

SP-A 11.5 215 1.1 1.1 2.9 0.9<br />

GS-A 19.1 2924 1.2 1.4 8.2 0.9<br />

CS-C10-A 18.9 1540 1.1 1.2 4.9 0.9<br />

CS-C50-A 11.9 1211 1.1 1.1 4.0 1.1<br />

Smith & Teng (2003) 6-A 17.0 - 1.0 1.0 3.4 0.8<br />

Mohomed Ali FP-S-5 26.3 325 1.3 1.2 0.7 0.8<br />

et. al. (2001) FP-C-8.5 28.1 342 1.2 1.1 0.7 0.8<br />

FP-CG2-16 28.0 455 1.3 1.2 0.9 0.9<br />

FP-G-32 40.4 809 1.2 1.1 1.1 0.7<br />

FP-CG-16 62.1 1775 1.1 1.0 1.4 0.7<br />

Note: * with Lu et al’s (2005b) bond model; ** with Seracino et al’s (2007) bond model<br />

2.0<br />

2.0<br />

1.5<br />

1.5<br />

Mp* / Me<br />

1.0<br />

Mp** / Me<br />

1.0<br />

0.5<br />

0.0<br />

Average<br />

95% lower bound<br />

0 500 1000 1500 2000 2500 3000<br />

ε e (x10 -6 )<br />

(a) With Lu et al.’s (2005b) bond parameters<br />

Figure 7 Comparison of model predictions with test data<br />

NEW FLEXURAL DEBONDING STRENGTH MODEL<br />

0.5<br />

0.0<br />

Average<br />

95% lower bound<br />

0 500 1000 1500 2000 2500 3000<br />

ε e (x10 -6 )<br />

(b) With Seracino et al.’s (2007) bond parameters<br />

A new theoretical model developed in this section directly employs the theoretical debonding moment M p (Eq. 9)<br />

from the preceding interfacial shear analysis, i.e.<br />

δ f<br />

M p = φ1<br />

(13)<br />

m λ<br />

where λ and m are given in Eqs 3b-c in which the parameters A 1 and I 1 should be replaced respectively by A c,0<br />

and I c,0 that are the elastic sectional properties of the cracked unplated beam section. Coefficient φ 1 is introduced<br />

in Eq. 13 so the model can be turned into a lower bound design model.<br />

Calculation of M p (Eq. 13) needs the bond properties δ f ; τ f and G f for which any bond models such as Lu et al.’s<br />

(2005b) or Seracino et al.’s (2007) can be used. This is referred as M p* and M p** respectively when the above<br />

two bond models are used. <strong>The</strong> statistical results of prediction-to-test using both bond models give similar<br />

accuracy (Table 2). For predicting the debonding strength, φ 1 = 1.0, and Eq. 13 is the same as Eq. 9. Based on<br />

the data presented in Table 1, φ 1 = 0.737 or 0.701 for the 95 percentile (1.645 × standard deviation) lower bound<br />

respectively when Lu et al. (2005b) or Seracino et al. (2007) bond parameters are used.<br />

-174-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!