01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00656013, version 1 - 3 Jan 2012<br />

104 An Asymptotic Preserving scheme<br />

Proof. We will proceed in two steps :<br />

− find a particular solution (w n ,z n ) ∈ R 2 to the scheme (4.3.2)-(4.3.3) which is uniformly<br />

boun<strong>de</strong>d,<br />

− apply the comparison principle on the compact s<strong>et</strong> I(N0,a0) to prove an L ∞ bound<br />

on (u n ,v n ).<br />

For R0 = (1 + √ a)N0, we consi<strong>de</strong>r the numerical solution (w n ,z n ) to (4.3.2)-(4.3.3)<br />

with the particular initial data (w 0 ,z 0 ) = (R0,R0), which does not <strong>de</strong>pend on the space<br />

variable so that the transport step (4.3.2) is invariant. Then we apply the relaxation<br />

scheme (4.3.3), which yields<br />

where (u n ,v n ) are only given by<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

u n = u 0 = − R0<br />

√a =<br />

v n =<br />

w n = −v n − √ au n , z n = +v n − √ au n<br />

<br />

1+ 1<br />

√ a<br />

<br />

N0,<br />

<br />

1+ β∆t<br />

<br />

e<br />

ε<br />

−β∆t/ε v n−1 +<br />

− ∆t<br />

ε e−β∆t/ε R u 0 ,v n−1 .<br />

Then, we proceed by induction to show that:<br />

<br />

1− 1+ β∆t<br />

<br />

e<br />

ε<br />

−β∆t/ε<br />

<br />

A u 0<br />

∀n ∈ {0,...,N}, (w n ,z n ) ∈ I(N0,a0).<br />

We assume that (wn−1 ,zn−1 ) ∈ I(N0,a0), for some n ≥ 1. L<strong>et</strong> us prove that (wn ,zn ) ∈<br />

I(N0,a0). On the one hand since un = u0 , it yields<br />

u n L∞ = u0L∞ ≤<br />

<br />

1 + 1<br />

<br />

√<br />

a<br />

N0 ≤ U(N0,a0).<br />

On the other hand, using a first or<strong>de</strong>r Taylor expansion of the source term R(u0 ,.), we g<strong>et</strong><br />

that there exists ˜v n−1 ∈ R such that<br />

v n <br />

= 1+ β −∂vR(u0 ,˜v k <br />

)<br />

∆t e<br />

ε<br />

−β∆t/ε v n−1<br />

<br />

+ 1− 1+ β −∂vR(u0 ,˜v k <br />

)<br />

∆t e<br />

ε<br />

−β∆t/ε<br />

<br />

A u 0 .<br />

Therefore, <strong>de</strong>noting by λk ∈ R, the real number such that<br />

<br />

λk := 1+ β −∂vR(u0 ,˜v k <br />

)<br />

∆t e<br />

ε<br />

−β∆t/ε , ∀k ∈ N,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!