01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00656013, version 1 - 3 Jan 2012<br />

3.1 Numerical scheme 71<br />

where ⎧⎪ ⎨<br />

⎪⎩<br />

α n i,j = ∂iF C<br />

i (ξ n i ) ∆t<br />

2∆x +a∞<br />

∆t ∆t<br />

+µ<br />

2∆x ∆x2 δn i,j−1/2 ,<br />

β n i,j = 1−a∞<br />

∆t ∆t<br />

−µ<br />

∆x ∆x2 <br />

δ n i,j−1/2 +δn <br />

i,j+1/2 ,<br />

γ n i,j = −∂iF C<br />

i (ξ n i ) ∆t<br />

2∆x +a∞<br />

∆t ∆t<br />

+µ<br />

2∆x ∆x2 δn i,j+1/2 ,<br />

with γ n i,j+1/2 =<br />

⎧<br />

⎨<br />

⎩<br />

0 if i = 0,<br />

H n j+1/2 if i = 1,<br />

1 if 2 ≤ i ≤ N .<br />

Now, with the <strong>de</strong>finition of a∞ and the fact that the size of the uppest layer is of or<strong>de</strong>r<br />

O h strictly smaller than 1, we can require the following CFL condition:<br />

∆t ∆t<br />

a∞ +2µ < 1. (CFL)<br />

∆x ∆x2 Actually, we will rather use an explicit Runge Kutta of or<strong>de</strong>r 4 scheme in time instead of<br />

an explicit Euler scheme, and the time step is recomputed after each step to statisfy the<br />

stability condition (CFL). Moreover, we introduce slope limiters in the fluxes to reconstruct<br />

the unknowns Vi on the right (+) and on the left (−) of the cell interfaces xj+1/2. We use<br />

the classical minmod limiters σi,j, that is for 0 ≤ i ≤ N, for j ∈ Z:<br />

σi,j = minmod (Vi,j+1 −Vi,j,Vi,j −Vi,j−1).<br />

Then the right and left reconstructed values at interface xj+1/2 of the ith coordinate of V<br />

read: ⎧<br />

⎪⎨<br />

⎪⎩<br />

V +<br />

i,j+1/2 = Vi,j+1 −σi,j+1 (Vi,j+2 −Vi,j+1) ,<br />

V −<br />

i,j+1/2 = Vi,j +σi,j (Vi,j+1 −Vi,j) .<br />

Hence the convective flux including the slope limiters reads, for 0 ≤ i ≤ N, for j ∈ Z:<br />

F C 1<br />

<br />

i,j+1/2 = F<br />

2<br />

C<br />

i (V +<br />

j+1/2 )+FC i (V −<br />

j+1/2 )−a∞<br />

+<br />

V i,j+1/2 −V−<br />

<br />

i,j+1/2<br />

<br />

.<br />

We do the same to compute the diffusive flux FD . L<strong>et</strong> us now <strong>de</strong>fine the discr<strong>et</strong>e W<br />

variable. Since the vertical velocity Wi+1/2,j is essentially an horizontal gradient of the<br />

velocity at the layer interface zi+1/2 and in the horizontal cell Cj, we choose the following<br />

reconstruction for j ∈ Z, for 1 i N −1:<br />

⎧<br />

⎪⎨<br />

W1/2,j = V3,j∂xzb(xj),<br />

⎪⎩<br />

1<br />

<br />

Wi+1/2,j = Wi−1/2,j −hi U<br />

2∆x<br />

+<br />

i,j+1/2 +U−<br />

<br />

i,j+1/2 − U +<br />

i,j−1/2 +U−<br />

<br />

i,j−1/2 .<br />

Finally we choose a smooth topographic source term, for which we can compute the <strong>de</strong>rivative<br />

exactly. This avoids numerical difficulties that can occur with the discr<strong>et</strong>ization of the<br />

source term Sb (which can be handled by different m<strong>et</strong>hods, see for example [13, 98]).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!