01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00656013, version 1 - 3 Jan 2012<br />

5.5 Numerical results 159<br />

• ˆ Vε,k,h, the implicit discr<strong>et</strong>e wall-law.<br />

In or<strong>de</strong>r to compute the cell problem and β, the constant at infinity related to the specific<br />

roughness f, we discr<strong>et</strong>ize a cell problem <strong>de</strong>fined on a truncated domain : find βL solving<br />

⎧<br />

⎪⎨ −∆βL = 0 in Z<br />

⎪⎩<br />

+ ∪Γ∪P ∩{y2 < L}<br />

∂nβ = 0 on {y2 = L}<br />

β = −y2<br />

on P0<br />

It is shown in [118] that the solutionβL converges exponentially fast, whenL → ∞, towards<br />

the solution of (5.3.15). So solving the problem above provi<strong>de</strong>s a good approximation of<br />

β L. And we use this numerical value in the boundary condition on Γ0 in (5.4.6) in or<strong>de</strong>r<br />

to compute ˆ Vε,k,h. The co<strong>de</strong> is written in freefem++ language [111]: it is very well suited<br />

for solving complex valued variational problems with finite elements. Our co<strong>de</strong> is available<br />

through Intern<strong>et</strong> (1) .<br />

5.5.2 Error estimates<br />

We compute numerical equivalent norms for a priori and very weak estimates. We plot<br />

this results in the log-log scale for various sizes ε (in abscissa) in fig. 5.4. We recover b<strong>et</strong>ter<br />

· H 1 (Ω0 )<br />

meshsize<br />

1<br />

û ε,k,h − û 0,k,h<br />

ǫ 0.75<br />

ûε,k,h − û1,k,h ǫ<br />

0.1<br />

0.1 1<br />

ǫ<br />

0.525<br />

0.1<br />

100000<br />

10000<br />

0.01<br />

0.1 1 1000<br />

# triangles<br />

ǫ<br />

h<br />

# vertices<br />

# vertices & triangles<br />

· L 2 (Ω0 )<br />

1<br />

0.1<br />

0.01<br />

ûε,k,h − û0,k,h 3<br />

ǫ2<br />

ûε,k,h − û1,k,h ǫ<br />

0.001<br />

0.1 1<br />

ǫ<br />

2.25<br />

Figure 5.4: Numerical error estimates in H 1 (Ω0) (left) and L 2 (Ω0) (middle) norms, and<br />

mesh param<strong>et</strong>ers (right)<br />

or<strong>de</strong>rs of convergence than expected: the very weak estimates provi<strong>de</strong> ε 3<br />

2 convergence for<br />

the Poiseuille profile while they give ε 9<br />

4 for the wall-law. The H1 (Ω0) norm (∼ ε 3<br />

4) is<br />

b<strong>et</strong>ter than expected for the Poiseuille profile while surprisingly the error is worse for the<br />

1 http://ljk.imag.fr/membres/Vuk.Milisic/Software/complexWallLaw.edp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!