01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00656013, version 1 - 3 Jan 2012<br />

112 An Asymptotic Preserving scheme<br />

Integrating over x ∈ Cj (4.5.3) and dividing by ∆x, it yields<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

˜w n+1<br />

j<br />

˜z n+1<br />

j<br />

= ˜wn+1/2<br />

j<br />

= ˜zn+1/2<br />

j<br />

with ⎧⎪ ⎨<br />

⎪⎩<br />

+ Gε,∆t<br />

− Gε,∆t<br />

˜w n+1/2<br />

j<br />

˜z n+1/2<br />

j<br />

<br />

˜w n+1/2<br />

j ,˜z n+1/2<br />

<br />

j + ∆tE n 1,j + ∆tEn 2,j ,<br />

<br />

˜w n+1/2<br />

j ,˜z n+1/2<br />

<br />

j + ∆tE n 3,j + ∆tE n 4,j,<br />

= ˜w n j −√ a ∆t<br />

∆x<br />

= ˜z n j +√ a ∆t<br />

∆x<br />

n<br />

˜w j − ˜w n <br />

j−1 ,<br />

n<br />

˜z j+1 − ˜z n j .<br />

The consistency errors related to the transport operator E n 1,j , En 3,j<br />

by<br />

where ε n 1,j+1/2 and εn 3,j+1/2<br />

by<br />

∆tE n 1,j = εn 1,j+1/2 −εn 1,j−1/2<br />

∆x<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ε n 1,j+1/2<br />

ε n 3,j+1/2<br />

, ∆tE n 3,j = εn 3,j+1/2 −εn 3,j−1/2<br />

,<br />

∆x<br />

(4.5.5)<br />

are respectively <strong>de</strong>fined<br />

are the consistency errors of the numerical flux and are given<br />

= −<br />

= +<br />

whereas the consistency errors ∆tE n 2,j and ∆tEn 4,j<br />

√ a∆t<br />

wδ(t<br />

0<br />

n ,xj+1/2 −s)ds + √ a∆t ˜w n j ,<br />

√ a∆t<br />

zδ(t<br />

0<br />

n ,xj+1/2 +s)ds − √ a∆t˜z n j+1 ,<br />

correspond to the stiff source term and<br />

are given by<br />

⎧<br />

∆tE<br />

⎪⎨<br />

n 2,j = + 1<br />

∆t 1<br />

∆x Cj 0 ε Rδ(u,v)(t n +s,x− √ <br />

a(∆t−s))ds − Gε,∆t ˜w n+1/2<br />

j ,˜z n+1/2<br />

<br />

j dx,<br />

⎪⎩<br />

∆tE n 4,j = − 1<br />

∆t 1<br />

∆x Cj 0 ε Rδ(u,v)(t n +s,x+ √ <br />

a(∆t−s))ds − Gε,∆t ˜w n+1/2<br />

j ,˜z n+1/2<br />

<br />

j dx.<br />

We then evaluate successively each consistency error term. On the one hand, we prove<br />

the following consistency error for smooth solutions, which is related to the transport<br />

approximation.<br />

Proposition 5.2. L<strong>et</strong> (w,z) be given by (4.3.1), where (u,v) is the exact solution to<br />

(4.1.1)-(4.1.2) and such that w, z ∈ L ∞ (R + ,BV(R)). Then the consistency error related<br />

to the transport part satisfies<br />

<br />

j∈Z<br />

∆x |E n 1,j| + |E n 3,j| ≤ C ∆x<br />

δ<br />

(TV(w(t n )) + TV(z(t n )).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!