01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00656013, version 1 - 3 Jan 2012<br />

3.2 Numerical experiments 75<br />

where ũ(t,x,a) = u(t,x,Z(t,x,a)) and ˜w(t,x,a) = w(t,x,Z(t,x,a)). Boundary conditions<br />

are obtained in the same way. This formulation allows to perform a finite volume<br />

scheme.<br />

We take periodic boundary conditions, no friction and the computational domain is<br />

[0,1]. We run the multilayer co<strong>de</strong> for 15 layers (h = 0.006) and 40 layers (h = 0.002), with<br />

the following initial conditions<br />

⎧<br />

⎨<br />

⎩<br />

η(0,x) = 0.1+0.01 1+0.5 cos(2πx/L)+0.2 sin(4πx/L) ,<br />

ui(0,x) ≡ 0 for 1 i N ,<br />

(3.2.5)<br />

and corresponding initial datum for the Euler system. In Figures 3.4 and 3.5 we output<br />

the profiles of the free surface and the mean velocity at different times. We can observe<br />

that curves fit well. Nevertheless, since the Lagrangian formulation of the Euler equations<br />

is only valid on short times, the hydrostatic co<strong>de</strong> becomes unstable and starts to oscillate<br />

after around 100 iterations.<br />

0.105<br />

0.104<br />

0.103<br />

0.102<br />

0.101<br />

0.1<br />

0.099<br />

0.098<br />

0.097<br />

hydro<br />

15 layers<br />

0.096<br />

0 1 2 3 4 5 6 7 8 9 10<br />

0.106<br />

0.104<br />

0.102<br />

0.1<br />

0.098<br />

0.096<br />

0.094<br />

hydro<br />

15 layers<br />

0 1 2 3 4 5 6 7 8 9 10<br />

(a) (b) (c)<br />

Figure 3.4: Evolution of the free surface , t = 10 (a), t = 40 (b), t = 80 (c)<br />

0.106<br />

0.104<br />

0.102<br />

0.1<br />

0.098<br />

0.096<br />

0.094<br />

hydro<br />

15 layers<br />

0 1 2 3 4 5 6 7 8 9 10<br />

The velocity fields are also plotted in Figure 3.6 at time t = 50 for both mo<strong>de</strong>ls. The<br />

profiles are in good agreement.<br />

3.2.3 Test 3: perturbation of rest in velocity, flat bottom<br />

In this section, we again consi<strong>de</strong>r a flat bottom, the spatial domain is [0,1], viscosity<br />

µ = 0.0001, no friction, periodic boundary conditions and we perturb the lake at rest in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!