01.05.2013 Views

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

Modélisation, analyse mathématique et simulations numériques de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00656013, version 1 - 3 Jan 2012<br />

64 A dynamic multilayer shallow water mo<strong>de</strong>l<br />

We <strong>de</strong>fine the constants ⎧ ⎪⎨<br />

⎪⎩<br />

E = 2(U 0 ,h 0 )2,<br />

η0 = 1<br />

2 inf<br />

x∈R h0 (x).<br />

The following lemma gives the existence of the whole sequence.<br />

Lemma 3.7. For suitably small T > 0, the sequence (U (j) ,h (j) )j∈N is well <strong>de</strong>fined and<br />

satisfies, for any t ∈ [0,T] and any j ∈ N:<br />

U (j) ∈ C(0,T;H 2 (R))∩C 1 (0,T;L 2 (R))∩L 2 (0,T;H 3 (R)),<br />

h (j) ∈ C(0,T;H 2 (R))∩C 1 (0,T;H 1 (R)).<br />

Moreover, for all (t,x) in [0,T]×R and all j ∈ N, we have:<br />

(U (j) ,h (j) )(t)2,<br />

t<br />

0<br />

U (j) (τ) 2 1/2 3 dτ<br />

(2.3.18)<br />

E, (2.3.19)<br />

h (j) (t,x) ≥ η0 > 0. (2.3.20)<br />

Proof. First we initialize the recursion. (U (0) ,h (0) ) verifies the good conditions by <strong>de</strong>finition.<br />

Applying Proposition 3.6, we obtain existence of (U (1) ,h (1) ) in C(0,t;H 2 (R)) for any<br />

t > 0. Moreover, applying the characteristic formula to h (1) , we g<strong>et</strong>, for any t > 0:<br />

h (1) (t,y) = h 0 t<br />

(X(0,t,y)) +<br />

0<br />

≥ 2η0 +C(E)t<br />

≥ η0 if t T1 small enough,<br />

F (0,1) (s,X(s,t,y))ds<br />

where T1 = T1(η0,E), which yields (2.3.20) for j = 1. It remains to prove (2.3.19). To<br />

do so, we write the inequality (2.3.14) given by Proposition 3.6 for (U (1) ,h (1) ), that is, for<br />

any t T1:<br />

(U (1) ,h (1) )(t)2,<br />

t<br />

U<br />

0<br />

(j) (τ) 2 1/2<br />

3 dτ<br />

Ke C (1+E)2 t<br />

Hence, applying Lemma 3.2 (2.3.3) to S (0) , we obtain<br />

(U (1) ,h (1) )(t)2,<br />

t<br />

U<br />

0<br />

(j) (τ) 2 3 dτ<br />

1/2<br />

<br />

E/2+<br />

t<br />

S<br />

0<br />

(0) (τ) 2 1/2<br />

1 dτ<br />

<br />

Ke C (1+E)2 t <br />

E/2+C(η0)E(1+E) √ <br />

t .<br />

Therefore, we can find 0 < T2 = T2(η0,E) T1 such that (2.3.19) is satisfied for any<br />

t T2. We choose T := T2.<br />

Next we pass from j to j +1. If for any j in N, (U (j) ,h (j) ) satisfies (2.3.18), (2.3.19)<br />

and (2.3.20) for any t T2, the existence of (U (j+1) ,h (j+1) ) follows again from Proposition<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!