28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

84 Part A Propagation of Sound<br />

Part A 3.13<br />

Rectangular Pis<strong>to</strong>n<br />

If the pis<strong>to</strong>n is rectangular, with dimensions a and b,and<br />

centered at the origin, the far-field pattern is given by<br />

F(θ,φ) = −iωρv0 sin [(1/2)a sin θ cos φ]<br />

ab<br />

2π (1/2)a sin θ cos φ<br />

× sin [(1/2)b sin θ sin φ]<br />

. (3.526)<br />

(1/2)b sin θ sin φ<br />

Circular Pis<strong>to</strong>n<br />

If the pis<strong>to</strong>n is circular of radius a, the corresponding<br />

expression is independent of the azimuthal angle and<br />

given by<br />

F(θ) = −iωρv0<br />

2π<br />

Ir (θ)<br />

Ir (0) θ<br />

�a<br />

0<br />

0.2 0.4 0.6 0.8<br />

�<br />

0<br />

2π<br />

a) ka =0 b)<br />

c) ka =4 d)<br />

Ir (θ)<br />

Ir (0)<br />

θ<br />

0.2 0.4 0.6 0.8<br />

Node at 73.3°;<br />

0.001 at 90°<br />

e −ikw0 sin θ cos φ0 dφ0 w0 dw0.<br />

ka =2<br />

Ir (θ)<br />

Ir (0) θ<br />

0.2 0.4 0.6 0.8<br />

ka =8<br />

0.4 0.6 0.8<br />

Nodes at 28.6°<br />

and 72.2°;<br />

0.017 at 39.6°;<br />

0.003 at 90°<br />

(3.527)<br />

Fig. 3.37 Far-field radiation patterns of a vibrating circular<br />

pis<strong>to</strong>n in an otherwise rigid baffle for various values of ka.<br />

The quantity plotted is the intensity at a large radial distance<br />

r relative <strong>to</strong> that when the polar angle θ is zero, which is<br />

[2J1(ξ)/ξ] 2 , with ξ = ka sin θ<br />

The integral over the azimuthal angle on the pis<strong>to</strong>n yields<br />

a Bessel function, so one has<br />

F(θ) =−iωρv0<br />

�a<br />

0<br />

J0(kw0 sin θ)w0 dw0 . (3.528)<br />

The recursion relation (3.472) implies that<br />

d<br />

dη J1(η) = J0(η) − 1<br />

η J1(η) , (3.529)<br />

so<br />

ηJ0(η) = η d<br />

dη J1(η) + J1(η) = d<br />

dη (ηJ1(η)) .<br />

(3.530)<br />

Consequently the integration in (3.528) can be performed<br />

in terms of the Bessel function of the first order,<br />

with the result<br />

F(θ) =−iωρv0a 2<br />

� �<br />

J1(ka sin θ)<br />

. (3.531)<br />

ka sin θ<br />

3.13.5 Thermoacoustic Sources<br />

The differential equation (3.516) arises when one suddenly<br />

adds heat <strong>to</strong> a fluid [3.71,72], as with a laser or by<br />

combustion, so that the entropy s per unit mass changes<br />

according <strong>to</strong> the thermodynamic relation<br />

ρTDs/Dt = h , (3.532)<br />

so that, <strong>to</strong> first order, the equation of state (3.87) yields<br />

∂p ′ ∂ρ′<br />

= c2<br />

∂t ∂t + c2β h . (3.533)<br />

cp<br />

Here h is the heat added per unit time and unit volume,<br />

β is the volume expansion coefficient defined by (3.30),<br />

and cp is the specific heat at constant pressure.<br />

Equation (3.533) changes the basic linear acoustic<br />

equations (3.71)and(3.72)<strong>to</strong><br />

∂p<br />

∂t + ρc2∇·v = c2β h , (3.534)<br />

cp<br />

∂v<br />

ρ0 +∇p = 0 , (3.535)<br />

∂t<br />

so the energy conservation corollary of (3.273) becomes<br />

∂w β<br />

+∇·I = ph , (3.536)<br />

∂t ρcp<br />

and the wave equation becomes<br />

∇ 2 p − 1<br />

c 2<br />

∂2 p ∂h<br />

=−β . (3.537)<br />

∂t2 cp ∂t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!