28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

924 Part G Structural <strong>Acoustics</strong> and Noise<br />

Part G 22.4<br />

Example: Homogeneous Rectangular Simply Supported<br />

Plate. From (22.180) and(22.183), we obtain<br />

for a homogeneous orthotropic plate<br />

ρph ∂2w ∂<br />

+ D1<br />

∂t2 4w ∂x4 + (D2 + D4)×<br />

∂4w ∂x2 + D3<br />

∂y2 ∂2w = 0 . (22.184)<br />

∂y4 For a rectangular plate of length a and width b, simply<br />

supported at its edges, the boundary conditions are<br />

⎧<br />

W(0, y, t) = W(a, y, t) = W(x, 0, t)<br />

⎪⎨<br />

= W(x, b, t) = 0 ,<br />

Mx(0, y, t) = Mx(a, y, t) = My(x, 0, t)<br />

⎪⎩<br />

= My(x, b, t) = 0 .<br />

(22.185)<br />

The eigenfunctions satisfying (22.185) are of the form<br />

Φmn(x, y) = sin mπx nπ y<br />

sin (22.186)<br />

a b<br />

and the associated eigenfrequencies are given by:<br />

ωmn = π 2<br />

�<br />

1<br />

ρph<br />

�<br />

m<br />

× D1<br />

4 n<br />

+ D3<br />

a4 4<br />

b4 + (D2 + D4) m2n 2<br />

a2 .<br />

b2 (22.187)<br />

In both expressions, m and n are positive integers.<br />

As for strings and beams, the eigenfunctions Φmn are<br />

orthogonal with respect <strong>to</strong> mass and stiffness, so that<br />

�a<br />

0<br />

�<br />

0<br />

b<br />

ρphΦmn(x, y)Φm ′ n ′(x, y)dx dy =<br />

⎧<br />

⎨<br />

0 ifm�= m<br />

⎩<br />

′ or n �= n ′ ,<br />

Mmn if m = m ′ and n = n ′ ;<br />

(22.188)<br />

where Mmn is the modal mass for the mode (m, n).<br />

The eigenfrequencies for the orthotropic plate are distributed<br />

between two limiting curves in the (k, f )-plane<br />

(Fig. 22.12).<br />

Particular Case: Isotropic Plate<br />

In the isotropic case, the rigidity coefficients become<br />

D1 = D3 = D =<br />

Eh 3<br />

12(1 − ν 2 )<br />

(22.189)<br />

Frequency (kHz)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80 90 100<br />

Wavenumber<br />

Fig. 22.12 Dispersion curves for an orthotropic plate made<br />

of carbon fibers with D1 = 8437 MPa; D2 = 463 MPa;<br />

D3 = 852 MPa; D4 = 2267 MPa; h = 2mm; ρp =<br />

1540 kg/m 3 ; a = 0.4m;b = 0.2m<br />

and<br />

D4 = Eh3<br />

6(1 + ν) ,<br />

D2 = 2D1 − D4 = Eνh3<br />

6(1 − ν2 . (22.190)<br />

)<br />

Here, the elastic behavior of the material is fully determined<br />

by two constants: the Young’s modulus E and the<br />

Poisson’s ratio ν. The eigenfunctions Φmn(x, y) arethe<br />

same as in (22.186). However, the eigenfrequencies now<br />

reduce <strong>to</strong><br />

ωmn = π 2<br />

� �<br />

D m2 n2<br />

+<br />

ρph a2 b2 �<br />

. (22.191)<br />

Prestressed Isotropic Plate. If a tension (or compression)<br />

Tx in the x-direction and, simultaneously, a tension<br />

(or compression) Ty in the y-direction are applied in the<br />

plate plane, then the flexural equation is modified as<br />

follows [22.1]:<br />

ρph ∂2 �<br />

w ∂4w + D<br />

∂t2 ∂x4 + 2 ∂4w ∂x2∂y 2 + ∂2w ∂y4 �<br />

∂<br />

− Tx<br />

2w ∂<br />

− Ty<br />

∂x2 2w = 0 . (22.192)<br />

∂y2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!