28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

954 Part G Structural <strong>Acoustics</strong> and Noise<br />

Part G 22.7<br />

the definition of the Jacobian matrix J of the system:<br />

�<br />

� ∂ f1<br />

�<br />

�<br />

� ∂a1<br />

�<br />

� ∂ f2<br />

�<br />

� ∂a1<br />

J = �<br />

�<br />

� ∂ f3<br />

�<br />

� ∂a1<br />

�<br />

�<br />

� ∂ f4<br />

�<br />

∂a1<br />

∂ f1<br />

∂γ1<br />

∂ f2<br />

∂γ1<br />

∂ f3<br />

∂γ1<br />

∂ f4<br />

∂γ1<br />

∂ f1<br />

∂a2<br />

∂ f2<br />

∂a2<br />

∂ f3<br />

∂a2<br />

∂ f4<br />

∂a2<br />

�<br />

∂ f1 �<br />

�<br />

∂γ2<br />

�<br />

�<br />

∂<br />

�<br />

f2 �<br />

�<br />

∂γ2 �<br />

�<br />

∂ f3<br />

� . (22.429)<br />

�<br />

�<br />

∂γ2 �<br />

�<br />

∂ f4 �<br />

�<br />

�<br />

∂γ2<br />

In our case, the eigenvalues of this Jacobian are<br />

⎧<br />

λ1 =−µ2 + iσ2 ;<br />

⎪⎨ λ2 =−µ2− iσ2 ;<br />

λ3 =−<br />

⎪⎩<br />

β12a2<br />

sin γ2 − µ1 ;<br />

4ω1<br />

λ4 = β12a2<br />

(22.430)<br />

sin γ2 .<br />

2ω1<br />

The system is unstable if the real part of any one of<br />

these eigenvalues is positive. In (22.430), the real parts<br />

of λ1 and λ2 are negative, because of the damping<br />

term µ2. However, calculating the product of the two<br />

other eigenvalues yields<br />

λ3λ4 =− µ1β12a2<br />

2ω1<br />

sin γ2 − β2 12 a2 2<br />

8ω 2 1<br />

sin 2 γ2 .<br />

(22.431)<br />

This product can be negative, leading <strong>to</strong> an instability, if<br />

a2 > 2ω1<br />

�<br />

4µ<br />

|β12|<br />

2 1 + (σ1 + σ2) 2 . (22.432)<br />

The instability domain corresponding <strong>to</strong> (22.432) isthe<br />

shaded area in Fig. 22.29.<br />

Amplitudes and Phases of the Solution. Solutions for<br />

the nonlinear coupled system are obtained by combining<br />

(22.422) with (22.424), taking the definitions of T1, σ1,<br />

σ2 γ1 and γ2 in<strong>to</strong> account. We then obtain<br />

⎧<br />

⎪⎨ x10 = a1 cos(ω1t + θ1)<br />

= a1 cos<br />

⎪⎩<br />

� Ω<br />

2 t − γ1+γ2<br />

�<br />

2 ,<br />

x20 = a2 cos(ω2t + θ2) = a2 cos � �<br />

Ωt − γ1 ,<br />

(22.433)<br />

where, by solving the system (22.427), the amplitudes<br />

of the oscilla<strong>to</strong>rs are given by<br />

⎧<br />

a2 =<br />

⎪⎨<br />

2ω1<br />

�<br />

(σ1 + σ2)<br />

|β12|<br />

2 + 4µ 2 1 ,<br />

a1 = 2 � �<br />

− Γ1 ± P2 / � 4β2 � �<br />

21 − Γ 2 1/2<br />

2 ,<br />

with Γ1 = 2ω1ω2<br />

[2µ1µ2 − σ2(σ1 + σ2)] ,<br />

β12β21<br />

⎪⎩ and Γ2 = 2ω1ω2<br />

[2µ1σ2 − µ2(σ1 + σ2)] .<br />

β12β21<br />

(22.434)<br />

Equation (22.433) shows that, for steady-state oscillations,<br />

the forcing frequency Ω is the same as the<br />

oscillation frequency of the second oscilla<strong>to</strong>r whereas,<br />

for appropriate conditions of instability, the first one oscillates<br />

with frequency Ω/2, as a result of the nonlinear<br />

coupling. Figure 22.29 shows the resonance curves of<br />

the coupled nonlinear oscilla<strong>to</strong>rs as a function of σ2.<br />

By increasing this parameter progressively, successive<br />

phenomena occur:<br />

1. First the resonance curve is that of the second oscilla<strong>to</strong>r.<br />

No subharmonics are observed as long as the<br />

amplitude remains below the instability region.<br />

2. As the amplitude of the second oscilla<strong>to</strong>r reaches the<br />

instability limit given in (22.432), the first oscilla<strong>to</strong>r<br />

starts <strong>to</strong> oscillate. In our example, its magnitude a1<br />

is larger than a2.<br />

Amplitudes (mm)<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Mode 2<br />

Mode 1<br />

219.4 219.6 219.8 220 220.2 220.4 220.6 220.8 221.0<br />

Excitation frequency (Hz)<br />

Fig. 22.30 Experimental response curves for two nonlinearly<br />

coupled degrees of freedom of a harmonically forced<br />

spherical shell (after Thomas et al. [22.19])

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!