28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rodrigues relation, one has<br />

�1<br />

−1<br />

=<br />

[Pℓ(ξ)] 2 dξ<br />

�<br />

1<br />

2ℓ �2 ℓ!<br />

(−1) ℓ<br />

�<br />

1<br />

−1<br />

(ξ 2 − 1) ℓ<br />

× d2ℓ<br />

dξ2ℓ (ξ2 − 1) ℓ dξ (3.389)<br />

�<br />

1<br />

=<br />

2ℓ �2 ℓ!<br />

�1<br />

(2ℓ)! (1 − ξ 2 ) ℓ dξ<br />

−1<br />

�<br />

1<br />

=<br />

2ℓ �2 �π/2<br />

(2ℓ)!2<br />

ℓ!<br />

0<br />

sin θ 2ℓ+1 dθ. (3.390)<br />

The trigonometric integral Iℓ in the latter expression is<br />

evaluated using the trigonometric identity<br />

d<br />

dθ (sin2ℓ θ cos θ) =−sin 2ℓ+1 θ<br />

+ 2ℓ(sin 2ℓ−2 θ)(1 − sin 2 θ) ,<br />

(3.391)<br />

the integral of which yields the recursion relation<br />

Iℓ = 2ℓ<br />

(2ℓ + 1) Iℓ−1 , (3.392)<br />

and from this one infers<br />

Iℓ = (2ℓ ℓ!) 2<br />

(2ℓ + 1)! I0 . (3.393)<br />

The integral for ℓ = 0 is unity, so one has<br />

�1<br />

−1<br />

[Pℓ(ξ)] 2 �<br />

1<br />

dξ =<br />

2ℓ �2 �<br />

(2ℓℓ!) 2 �<br />

(2ℓ)!2<br />

ℓ! (2ℓ + 1)!<br />

= 2<br />

. (3.394)<br />

2ℓ + 1<br />

Spherical Bessel Functions<br />

The ordinary differential equation (3.362) for the fac<strong>to</strong>r<br />

Êℓ(η) takes the form<br />

d<br />

dη<br />

�<br />

η<br />

2 dÊℓ<br />

dη<br />

�<br />

− ℓ(ℓ + 1)Êℓ + η 2 Êℓ = 0 , (3.395)<br />

with the identification for the separation constant that<br />

results from the requirement that the θ-dependent fac<strong>to</strong>r<br />

Basic Linear <strong>Acoustics</strong> 3.11 Spherical Waves 71<br />

be finite at θ = 0andθ = π.Forℓ = 0, a possible solution<br />

is<br />

Ê0 = A0<br />

e iη<br />

η<br />

, (3.396)<br />

as can be verified by direct substitution, with A0 being<br />

any constant. Since there is no corresponding θ dependence<br />

this is the same as the solution (3.327) foran<br />

outgoing spherical wave.<br />

For arbitrary positive integer ℓ, a possible solution<br />

is<br />

h (1)<br />

�<br />

ℓ (η) =−iηℓ − 1<br />

�ℓ d eiη , (3.397)<br />

η dη η<br />

so that, in particular,<br />

h (1) eiη<br />

0 (η) =−i<br />

η ;<br />

h (1) d<br />

1 (η) = i<br />

dη<br />

e iη<br />

η =−<br />

�<br />

1 + i<br />

�<br />

eiη η η<br />

. (3.398)<br />

Alternately, both the real and imaginary parts should be<br />

solutions, so if one writes<br />

h (1)<br />

ℓ (η) = jℓ(η) + iyℓ(η) , (3.399)<br />

then<br />

jℓ(η) = η ℓ<br />

yℓ(η) =−η ℓ<br />

jl (η)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

–0.1<br />

–0.2<br />

l=0<br />

�<br />

− 1<br />

η<br />

�<br />

− 1<br />

η<br />

l=1<br />

�ℓ d sin η<br />

dη η<br />

l=2<br />

d<br />

dη<br />

l=3<br />

, (3.400)<br />

�ℓ cos η<br />

, (3.401)<br />

η<br />

–0.3<br />

2 4 6 8 10 12 14<br />

Fig. 3.26 Spherical Bessel functions for various orders<br />

η<br />

Part A 3.11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!