28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

288 Part B Physical and Nonlinear <strong>Acoustics</strong><br />

Part B 8.11<br />

Bubble radius (µm)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

10<br />

20<br />

30<br />

40 50<br />

Time (µs)<br />

in a small bubble is relatively small, around 10 9 <strong>to</strong><br />

10 10 molecules, this approach promises progress for<br />

the question of internal shock waves. At present molecular<br />

dynamics simulations are feasible with several<br />

t = +0 ps, = 389 kg/m3 t = +28 ps, = 519 kg/m3 t = +40 ps, = 584 kg/m3 z/µm<br />

Temperature T/(104K) z/µm<br />

Temperature T/(104K) z/µm<br />

Temperature T/(104K) 0.5<br />

0.0<br />

–0.5<br />

–0.5 0.0 0.5<br />

r/µm<br />

0.65<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.5<br />

0.0<br />

–0.5<br />

–0.5 0.0 0.5<br />

r/µm<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.5<br />

0.0<br />

–0.5<br />

–0.5 0.0 0.5<br />

r/µm<br />

t = +66 ps, = 753 kg/m3 t = +80 ps, = 844 kg/m3 t = +106 ps, = 998 kg/m3 z/µm<br />

Temperature T/(104K) z/µm<br />

Temperature T/(104K) z/µm<br />

Temperature T/(104K) 0.5<br />

0.0<br />

–0.5<br />

–0.5 0.0 0.5<br />

r/µm<br />

18.0<br />

16.0<br />

0.5<br />

14.0<br />

12.0<br />

10.0<br />

0.0<br />

8.0<br />

6.0<br />

4.0<br />

–0.5<br />

2.0<br />

0.0<br />

–0.5 0.0 0.5<br />

r/µm<br />

Fig. 8.19 Radius-time curve of a trapped bubble in a<br />

water-glycerine mixture derived from pho<strong>to</strong>graphic observations.<br />

A numerically calculated curve (Gilmore model)<br />

is superimposed on the experimental data points (open<br />

circles). The calculation is based on the following parameters:<br />

driving frequency f0 = 21.4 kHz, ambient pressure<br />

p0 = 100 kPa, driving pressure p0 = 132 kPa, vapor pressure<br />

pv = 0, equilibrium radius Rn = 8.1 µm, density of<br />

the liquid ρ = 1000 kg/m 3 , viscosity µ = 0.0018 Ns/m 2<br />

(measured) and surface tension σ = 0.0725 N/m. The gas<br />

within the bubble is assumed <strong>to</strong> obey the adiabatic equation<br />

of state for an ideal gas with κ = 1.2. (Measured points<br />

courtesy of R. Geisler)<br />

million particles inside the bubble. Figure 8.20 gives<br />

a graphical view on the internal temperature distribution<br />

inside a collapsing sonoluminescence bubble with<br />

near-adiabatic conditions (reflection of the molecules<br />

at the inner boundary of the bubble) for six different<br />

times around maximum compression. The liquid<br />

12.0<br />

11.0<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0.5<br />

0.0<br />

–0.5<br />

–0.5 0.0 0.5<br />

r/µm<br />

Fig. 8.20 Temperature distribution inside a collapsing sonoluminescence bubble filled with argon, one million particles,<br />

radius of the bubble at rest 4.5 µm, sound pressure amplitude 130 kPa, sound field frequency 26.5 kHz, <strong>to</strong>tal time covered<br />

106 ps. (Courtesy of B. Metten [8.126])<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!