28.02.2013 Views

Introduction to Acoustics

Introduction to Acoustics

Introduction to Acoustics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

[3.108], and Carslaw [3.109]. In the modern era with<br />

digital computers, where the numerical calculation of<br />

Fourier transforms is virtually instantaneous and routine,<br />

an explicit analytical solution for the impulse response<br />

is often a good starting point for determining diffraction<br />

of waves of constant frequency.)<br />

3.17.6 Constant-Frequency Diffraction<br />

The transient solution (3.664) above yields the solution<br />

for when the source is of constant frequency. One makes<br />

the substitution<br />

S(t) → ˆSe −iωt , (3.674)<br />

and obtains<br />

ˆpdiffr =− ˆS<br />

β<br />

�∞<br />

L<br />

e ikξ Kν(ξ) dξ. (3.675)<br />

The integral that appears here can be reduced <strong>to</strong> standard<br />

functions in various limits. A convenient first step is <strong>to</strong><br />

change the integration variable <strong>to</strong> the parameter s, so<br />

that<br />

ξ 2 = L 2 + (L 2 − Q 2 )sinh 2 (s/2) , (3.676)<br />

dξ<br />

[ξ2 − Q2 ] 1/2 [ξ2 − L2 ds<br />

= ,<br />

] 1/2 2ξ<br />

(3.677)<br />

and so that the range of integration on s is from 0 <strong>to</strong> ∞.<br />

One notes that the integrand is even in s, sothatitis<br />

convenient <strong>to</strong> extend the integration from −∞ <strong>to</strong> ∞,<br />

and then divide by two. Also, one can use trigonometric<br />

identities <strong>to</strong> combine the x1 term with the x2 term and<br />

<strong>to</strong> combine the x3 term with the x4 term. All this yields<br />

the result<br />

where<br />

ˆpdiffr = ˆS sin νπ<br />

2β<br />

�<br />

�∞<br />

+,−<br />

−∞<br />

e ikξ<br />

ξ Fν(s,φ± φS)ds ,<br />

(3.678)<br />

Uν(φ) − J(νs)cosνφ<br />

Fν(s,φ) =<br />

J2 (νs) + 2J(νs)V 2 ν (φ) +U2 ,<br />

ν (φ)<br />

(3.679)<br />

with the abbreviations<br />

J(νs) = cosh νs − 1 , (3.680)<br />

Uν(φ) = cos νπ − cos νφ , (3.681)<br />

Vν(φ) = (1 − cos νφ cos νπ) 1/2 . (3.682)<br />

Basic Linear <strong>Acoustics</strong> 3.17 Diffraction 103<br />

The requisite integrals exist, except when either Uν(φ +<br />

φS) orUν(φ − φS) should be zero. The angles at which<br />

one or the other occurs correspond <strong>to</strong> boundaries between<br />

different regions of the diffracted field.<br />

3.17.7 Uniform Asymp<strong>to</strong>tic Solution<br />

Although the integration in (3.678) can readily be<br />

completed numerically, considerable insight and useful<br />

formulas arise when one considers the limit when both<br />

the source and the listener are many wavelengths from<br />

the edge. One argues that the dominant contribution <strong>to</strong><br />

the integration comes from values of s that are close <strong>to</strong><br />

0 (where the phase of the exponential is stationary), so<br />

one approximates<br />

ξ → L + (L2 − Q2 )<br />

s<br />

8L<br />

2 = L + π<br />

2k Γ 2 s 2 ,<br />

(3.683)<br />

e ikξ<br />

ξ<br />

→ eikL<br />

L ei(π/2)Γ 2 s 2<br />

, (3.684)<br />

J(νs) = cosh νs − 1 → ν2<br />

2 s2 , (3.685)<br />

Uν(φ)<br />

Fν(s,φ) →<br />

U2 ν (φ) + ν2V 2 ,<br />

ν (φ)s2<br />

�<br />

1 1<br />

=<br />

2νVν(φ) Mν(φ) + is +<br />

�<br />

1<br />

.<br />

Mν(φ) − is<br />

(3.686)<br />

The expression (3.686) uses the abbreviation<br />

Mν(φ) = Uν(φ)<br />

νVν(φ) =<br />

while (3.684) uses the abbreviation<br />

Γ 2 = k (L2 − Q 2 )<br />

4πL<br />

cos νπ − cos νφ<br />

,<br />

1/2 ν (1 − cos νφ cos νπ)<br />

(3.687)<br />

kwwS<br />

= , (3.688)<br />

πL<br />

where the latter version follows from the definitions<br />

(3.649)and(3.650).<br />

One also notes that the symmetry in the exponential<br />

fac<strong>to</strong>r allows one <strong>to</strong> identify<br />

�∞<br />

−∞<br />

e i(π/2)Γ 2 s 2<br />

Mν + is<br />

ds =<br />

�∞<br />

−∞<br />

e i(π/2)Γ 2 s 2<br />

Mν − is<br />

ds , (3.689)<br />

so the number of required integral terms is halved.<br />

A further step is <strong>to</strong> change the the integration variable <strong>to</strong><br />

u = (π/2) 1/2 Γ e −iπ/4 s . (3.690)<br />

Part A 3.17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!