28.02.2013 Views

Handbook of Turbomachinery Second Edition Revised - Ventech!

Handbook of Turbomachinery Second Edition Revised - Ventech!

Handbook of Turbomachinery Second Edition Revised - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

clearance. Since tip clearance represents a loss at the tip <strong>of</strong> the blade, the rest<br />

<strong>of</strong> the blade does more than the average work. Therefore, the vector<br />

diagram is calculated using the zero-clearance efficiency. Since we do not<br />

know the turbine geometry at this point, we must make another assumption:<br />

we assume that the tip clearance loss is 5%, so that the overall zero-clearance<br />

efficiency is 0.84. Note that the required flow rate is calculated using the<br />

overall efficiency with clearance, since that represents the energy available at<br />

the turbine shaft. Equation (2) is used to calculate the actual enthalpy drops:<br />

and<br />

DhOA ¼ð0:8Þ 49:14 Btu<br />

lbm<br />

DhOA ZC ¼ð0:84Þ 49:14 Btu<br />

lbm<br />

¼ 39:31 Btu<br />

lbm<br />

¼ 41:28 Btu<br />

lbm<br />

The required turbine flow is found using Eq. (7):<br />

_m ¼ P ð100 hpÞð:7069 Btu=sec=hpÞ<br />

¼ ¼ 1:798 lbm= sec<br />

DhOA 39:31 Btu=lbm<br />

The mass flow rate is needed to calculate turbine flow area and is also a<br />

system requirement.<br />

We specify the vector diagram by selecting values <strong>of</strong> the turbine work<br />

and flow coefficients. We also select a turbine hub-to-tip radius ratio <strong>of</strong> 0.7,<br />

restricting the choice <strong>of</strong> mean work coefficient to values less than 1.356 in<br />

ordertoavoidnegativereactionatthehub.FromSmith’schart(Fig.12),we<br />

initially choose a work coefficient <strong>of</strong> 1.3 and a flow coefficient <strong>of</strong> 0.6 to result<br />

in a zero-clearance, stator inlet to rotor exit total-to-total efficiency <strong>of</strong> 0.94.<br />

We apply these coefficients at the mean radius <strong>of</strong> the turbine. From Eq. (22)<br />

we calculate the mean blade speed, Um:<br />

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

DhOA ZC ð32:174 ft lbf=ðlbm sec<br />

Um ¼<br />

¼<br />

l<br />

2 r<br />

ÞÞð778:16 ft lbf=BtuÞð41:28 Btu=lbmÞ<br />

1:3<br />

¼ 891:6ft= sec<br />

The axial velocity is calculated from Eq. (51):<br />

Vx2 ¼ð0:6Þð891:6ft= secÞ ¼535:0ft= sec<br />

In order to construct the vector diagram, we make two more assumptions:<br />

(1) there is zero swirl leaving the turbine stage in order to minimize the exit<br />

kinetic energy loss, and (2) the axial velocity is constant through the stage.<br />

Copyright © 2003 Marcel Dekker, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!