28.02.2013 Views

Handbook of Turbomachinery Second Edition Revised - Ventech!

Handbook of Turbomachinery Second Edition Revised - Ventech!

Handbook of Turbomachinery Second Edition Revised - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

turbine with an effective diffuser, the rotor exit static pressure will be less<br />

than the discharge value. We will examine both cases.<br />

Turbine Without Diffuser<br />

First we consider the turbine without a diffuser. Assuming perfect gas<br />

behavior, the density is calculated from<br />

r 2 ¼ p2<br />

RgasT2<br />

where the temperature and pressure are static values and Rgas is the gas<br />

constant. The rotor exit total temperature is determined from<br />

T 0 2 ¼ T 0 0<br />

DhOA ZC<br />

Cp<br />

¼ 760 R<br />

41:28 Btu=lbm<br />

0:24 Btu=ðlbm RÞ 588:0R<br />

The zero-clearance enthalpy drop is used because the local temperature<br />

over the majority <strong>of</strong> the blade will reflect the higher work (a higher<br />

discharge temperature will be measured downstream <strong>of</strong> the turbine after<br />

mixing <strong>of</strong> the tip clearance flow has occurred). Next we calculate the rotor<br />

exit critical Mach number to determine the static temperature. The critical<br />

sonic velocity is calculated from<br />

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

2g<br />

acr ¼ gRgasT<br />

0<br />

g þ 1<br />

where g is a conversion factor. For air at low temperatures,<br />

Rgas ¼ 53:34 ft-lbf=lbm R, resulting in<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

acr2 ¼<br />

2ð1:4Þ<br />

1 þ 1:4<br />

ft lbf<br />

32:174<br />

lbm sec2 s<br />

ft lbf<br />

53:34 588 R<br />

lbm R<br />

¼ 1085 ft=sec<br />

The static temperature is found from<br />

T2 ¼ T 0 2 1<br />

"<br />

g 1<br />

g þ 1<br />

V2<br />

#<br />

2<br />

acr2<br />

with zero exit swirl, V2 ¼ Vx2 resulting in<br />

"<br />

T2 ¼ð588 RÞ 1<br />

1:4 1<br />

1 þ 1:4<br />

535 ft=sec<br />

1085 ft=sec<br />

#<br />

2<br />

¼ 564:2R<br />

Copyright © 2003 Marcel Dekker, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!