12.02.2014 Views

Radar System Engineering

Radar System Engineering

Radar System Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SEC. 13.3] SELECTION OF THE CATHODE-RAY TUBE 485<br />

because of the greater power required for deflection. These<br />

diiTerences are of significance only in airbmne equipment.<br />

4. The grid-modulation characteristic of most electrostatic tubes<br />

follows approximately a square law, whereas that of the guns used<br />

in most magnetic tubes is cubic. As compared with a linear<br />

response, these characteristics have the unfortunate property of<br />

lowering the dynamic range of usable echo intensities since they<br />

reduce the ratio between the upper limit of useful signal swing,<br />

set by the tendency to defocus, and the level below which the<br />

intensity is insufficient.<br />

TAZLE 13.1.—CATH0DE-RA%TUBES COMMONLYUSEDiFOR RADAR APPLICATIONS<br />

Bulb<br />

number<br />

Jseful<br />

liameter,<br />

in.<br />

Type of<br />

deflection<br />

hfax. accelerating<br />

voltige<br />

(nominal) Specified<br />

maximum<br />

POSL spot diam-<br />

Ieflec- eter, mm*<br />

Anode<br />

tion<br />

mode<br />

Commonly<br />

used ecreens<br />

2A<br />

2B (New)<br />

3B<br />

3D (Central<br />

electrode)<br />

3F<br />

3J<br />

3H<br />

4.4<br />

5B<br />

5C<br />

5F<br />

5L<br />

7B<br />

9G<br />

12G<br />

12D<br />

1.7!<br />

1.7:<br />

2.7!<br />

2.7!<br />

131ectroetatic<br />

Electrostatic!<br />

Electrostatic<br />

Electrostatic<br />

2.7! Electrostatic<br />

2.7{ Electrostatic<br />

2.5 }Iagnetic<br />

3.3: Magnetic<br />

4.5 Electrostatic<br />

4.5 Electrostatic<br />

4.2E Magnetic<br />

4.5 Electrostatic<br />

6.0 Nlagnetic<br />

7.62 Magnetic<br />

10.0 Electrostatic<br />

10.0 Magnetic<br />

1000<br />

2500<br />

2000<br />

2000<br />

2000<br />

2000<br />

5000<br />

9000<br />

2000<br />

2000<br />

7000<br />

2000<br />

7000<br />

7000<br />

4000<br />

7000<br />

0.5to 0.6<br />

. ., ..,,.<br />

o.55t00.7!<br />

0.6tol. O<br />

4000 . . . . . . . . . .<br />

4000 o.75too.9<br />

0.5to 0.6<br />

. . . . 0.3<br />

. . . . 0.6tol. O<br />

4000 0.6to 0.9<br />

0.5to 0.6<br />

4& . . . . . . . .<br />

o.75t00. s!<br />

.,. l,ot01,2<br />

6000 1.2tol.8<br />

.,. 1.35 t01,5<br />

P-1<br />

P-1<br />

P-1<br />

P-1<br />

P-7<br />

P-1, P-7<br />

P-7, P-12, P-14<br />

P-lo<br />

P-1<br />

P.1, P-7, P-12, P- 4<br />

P-7, P-12, 1’-14<br />

P-1, P-7<br />

P-7, 1’-12, P-14<br />

P-7, P-12, P-14<br />

P-1, P-7<br />

P-7<br />

● Mont magnetic tubes actually give fmm 0.5 to 0,7 of this maximum spot size. Electrostatic tubm<br />

are in general near the maximum.<br />

As a result of these factors, electrostatic tubes are invariably used for<br />

deflection-modulated indicators, but, except in cases of extreme weight<br />

limitation, magnetic tubes are used for most intensity-modulated displays.<br />

The size of the tube selected depends upon the particular application.<br />

The relative resolution is fairly independent of the size, so that from this<br />

standpoint alone there is little value in increasing the screen diameter

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!