26.12.2014 Views

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

V. Overview and Conclusions<br />

403<br />

FIGURE 13-13 Indocyanine green used for quantitative assessment <strong>of</strong><br />

hepatic excretory function.<br />

chronic forms <strong>of</strong> liver disease. It <strong>of</strong>ten is impossible to differentiate<br />

between different hepatic diseases on the basis<br />

<strong>of</strong> multiple laboratory tests alone, and hepatic imaging or<br />

liver biopsy is required. Hepatic tests, however, continue<br />

to have an important place in evaluating and monitoring<br />

clinical patients with liver disease and in understanding the<br />

underlying pathophysiological mechanisms essential for<br />

successful treatment.<br />

will be negative (true negatives). A laboratory test is said to<br />

be sensitive to the extent that it detects individuals with<br />

the disease (true positives divided by the total number<br />

with the disease [i.e., true positives plus false negatives]).<br />

The test is said to be specific to the extent that a negative<br />

result detects patients that are free <strong>of</strong> the disease (true negatives<br />

divided by the number <strong>of</strong> subjects without the disease<br />

[i.e., true negatives plus false positives]).<br />

In the clinical setting, the sensitivity and the specificity<br />

<strong>of</strong> hepatic tests are less important than the positive predictive<br />

value, defined as the probability that a positive test<br />

result indicates the presence <strong>of</strong> the disease (true positives<br />

divided by true positives plus the false positives), and the<br />

negative predictive value, the probability that a negative<br />

test result indicates the absence <strong>of</strong> the disease (true negatives<br />

divided by the true negatives plus false negatives).<br />

The predictive value <strong>of</strong> a test, unfortunately, depends on the<br />

population being studied and the proportion <strong>of</strong> individuals<br />

in the population with the disease (prevalence). Even when<br />

test sensitivity and specificity are high and the number<br />

<strong>of</strong> false-positive tests is low, if there are few subjects with<br />

the disease in the population, a positive test result will have<br />

relatively low positive predictive value, whereas a negative<br />

test result will have proportionately high negative predictive<br />

value. If the prevalence <strong>of</strong> a disease in a population<br />

is high, however, a positive result for a test with even low<br />

sensitivity and specificity will have high positive predictive<br />

value, whereas a negative result would have proportionately<br />

low predictive value for the absence <strong>of</strong> the disease.<br />

Although the sensitivity <strong>of</strong> a test is <strong>of</strong>ten discussed, the<br />

prevalence <strong>of</strong> the disease and the positive and negative predictive<br />

values <strong>of</strong> tests are <strong>of</strong>ten ignored in discussions <strong>of</strong><br />

interpretation <strong>of</strong> laboratory results. Importantly, laboratory<br />

test results from a selected group <strong>of</strong> individuals with a high<br />

prevalence <strong>of</strong> liver disease cannot be compared to a population<br />

in which the prevalence is low or to that in which the<br />

predictive value <strong>of</strong> a test in one population is similar to that<br />

<strong>of</strong> the other population.<br />

As indicated previously, it is unusual that a single test<br />

for hepatic injury or function is performed, but rather a<br />

“ pr<strong>of</strong>ile ” <strong>of</strong> hepatic test results ordinarily is obtained. The<br />

combined results <strong>of</strong> a panel <strong>of</strong> tests <strong>of</strong>ten provide increased<br />

sensitivity and specificity and improved predictive value in<br />

assessing severity or in differentiating between acute and<br />

REFERENCES<br />

Abdelkader , S. V. , and Hauge , J. G. ( 1986 ). Serum enzyme determination<br />

in the study <strong>of</strong> liver disease in dogs . Acta Vet. Scand. 27 , 59 – 70 .<br />

Ahboucha , S. , and Butterworth , R. F. ( 2007 ). The neurosteroid system:<br />

implication in the pathophysiology <strong>of</strong> hepatic encephalopathy . Metab.<br />

Brain Dis. 22 , 291 – 308 .<br />

Albrecht , J. , and Norenberg , M. D. ( 2006 ). Glutamine: a Trojan horse in<br />

ammonia neurotoxicity . Hepatology 44 , 788 – 794 .<br />

Alemu , P. , Forsyth , G. W. , and Searcy , G. P. ( 1977 ). A comparison <strong>of</strong><br />

parameters used to assess liver damage in sheep treated with carbon<br />

tetrachloride . Can. J. Compo. Med. 41 , 420 – 427 .<br />

Allcr<strong>of</strong>t , W. M. , and Folley , S. J. ( 1941 ). Observations on the serum phosphatase<br />

<strong>of</strong> cattle and sheep . Biochem. J. 35 , 254 – 266 .<br />

Alpert , S. , Mosher , M. , Shanske , A. , and Arias , I. M. ( 1969 ). Multiplicity<br />

<strong>of</strong> hepatic excretory mechanisms for organic anions . Gen. Physiol.<br />

53 , 238 – 247 .<br />

Alrefai , W. A. , and Gill , R. K. ( 2007 ). Bile acid transporters: structure,<br />

function, regulation and pathophysiological implications . Pharm.<br />

Res. 24 , 1803 – 1823 .<br />

Aminlari , M. , and Vaseghi , T. ( 1992 ). Arginase distribution in tissues <strong>of</strong><br />

domestic animals . Comp. Biochem. Physiol. B 103 , 385 – 389 .<br />

Aminlari , M. , Shahbazkia , H. R. , and Esfandiari , A. (2007 ). Distribution<br />

<strong>of</strong> arginase in tissues <strong>of</strong> cat (Felis catus) . J. Feline Med. Surg. 9 ,<br />

133 –139 .<br />

Aminlari , M. , Vaseghi , T. , Sajedianfard , M. J. , and Samsami , M. ( 1994 ).<br />

Changes in arginase, aminotransferases and rhodanese in sera <strong>of</strong><br />

domestic animals with experimentally induced liver necrosis . J. Comp.<br />

Pathol. 110 , 1 – 9 .<br />

Anthony , R. , Morrison , L. , MacSween , R. N. M. , and Whaley , K. ( 1985 ).<br />

Biosynthesis <strong>of</strong> complement components by cultured rat hepatocytes .<br />

<strong>Biochemistry</strong> J. 232 , 93 – 98 .<br />

Anwer , M. S. , Engelking , L. R. , Gronwall , R. , and Kientz , R. D. ( 1976 ).<br />

Plasma bile acid elevation following CCI4 induced liver damage in<br />

dogs, sheep, calves and ponies . Res. Vet. Sci. 20 , 127 – 130 .<br />

Archakov , A. I. , Karuzina , , II , Petushkova , N. A. , Lisitsa , A. V. , and Zgoda ,<br />

V. G. (2002 ). Production <strong>of</strong> carbon monoxide by cytochrome P450<br />

during iron-dependent lipid peroxidation . Toxicol. In Vitro 16 , 1 – 10 .<br />

Arias , I. M. , Che , M. , Gtmaitan , l. , Leville , C. , Nishida , T. , and St. Pierre , M.<br />

( 1993 ). The biology <strong>of</strong> the bile canaliculus . Hepatology 17 , 318 – 329 .<br />

Arias , I. M. , Johnson , L. , and Wolfson , S. ( 1961 ). Biliary excretion <strong>of</strong><br />

injected conjugated and unconjugated bilirubin by normal and Gunn<br />

rats . Am. J. Physiol. 200 , 1091 – 1094 .<br />

Aronsen , K. F. , Hägerstrand , I. , and Nordén , J. G. ( 1968 ). Enzyme studies<br />

in dogs with extra-hepatic biliary obstruction . Scan. J. Gastroenterol.<br />

3 , 355 – 368 .<br />

Asquith , R. L. , Edds , G. T. , Aller , W. W. , and Bortell , R. ( 1980 ). Plasma<br />

concentration <strong>of</strong> iditol dehydrogenase (sorbitol dehydrogenase) in<br />

ponies treated with aflatoxin B1 . Am. J. Vet. Res. 41 , 925 – 927 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!