26.12.2014 Views

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

Clinical Biochemistry of Domestic Animals (Sixth Edition) - UMK ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

II. Anterior Lobe and Intermediate Lobe<br />

579<br />

Pig/Dog FPAMPLSSLFANAVLRAQHLHQLAADTYKEFERAYIPEGQRYS IQNAQAAFCFSETIPAPTGKDE 65<br />

Cat ------------------------------------------- ----------------------<br />

Horse ------------------------------------------- ----------------------<br />

Mouse ----------S-------------------------------- --------------------E-<br />

Rat ------------------------------------------- --------------------E-<br />

Goat ----S--G-------------------F-----T--------- ---T-V--------------N-<br />

Sheep ----S--G-------------------F-----T--------- ---T-V--------------N-<br />

Cattle ----S--G-------------------F-----T--------- ---T-V--------------N-<br />

Human --TI---R--D--M---HR-----F---Q---E----KE-K--FLQ-P-TSL----S--T-SNRE-<br />

** ** ** ** *** ***** ** *** *** * ** * * **** ** * *<br />

Pig/Dog AQQRSDVELLRFSLLLIQSWLGPVQFLSRVFTNSLVFGTSD RVYEKLKDLEEGIQALMRELEDGS 130<br />

Cat ----------------------------------------- ------------------------<br />

Horse ------M------------------L--------------- ------R-----------------<br />

Mouse ----T-M----------------------I-----M----- -----------------Q------<br />

Rat ----T-M----------------------I-----M----- -----------------Q------<br />

Goat ---K--L----I-----------L----------------- -------------L--------VT<br />

Sheep ---K--L----I-----------L----------------- -------------L--------VT<br />

Cattle ---K--L----I-----------L----------------- -------------L---------T<br />

Human T--K-NL----I---------EP--------A----Y-A--SN--DL---------T--GR-----<br />

** **** ********* * *** * *** * ** ** * ****** ** ***<br />

Pig/Dog PRAGQILKQTYDKFDTNLRSDDALLKNYGLLSCFKKDLHKAETYLRVMKCRRFVESSCAF 190<br />

Cat --G---------------------------------------------------------<br />

Horse ------------------------------------------------------------<br />

Mouse --V------------A-M------------------------------------------<br />

Rat --I------------A-M-----------------------------------A------<br />

Goat -----------------M----------------------T------------G-A----<br />

Sheep ---------------R-M----------------R-----T------------G-A----<br />

Cattle -----------------M----------------R-----T------------G-A----<br />

Human --T---F----S-----SHN-----------Y--R--MDKV--F--IVQ--S --G--G-<br />

** *** **** *** *********** ** ** ** ** ** * ** *<br />

FIGURE 18-11 Sequence comparison <strong>of</strong> GH. See the legend for Figure 18-6 .<br />

Pig<br />

Dog<br />

Cat<br />

Horse<br />

Mouse<br />

Rat<br />

Goat<br />

Sheep<br />

Cattle<br />

Human<br />

in the mammary gland as it is demonstrated also in cats with<br />

progestin-induced fibroadenomatous changes <strong>of</strong> the mammary<br />

gland ( Mol et al. , 1995b ), and GH mRNA has been<br />

demonstrated in the normal and neoplastic human mammary<br />

gland as well ( Mol et al. , 1995a ; Mol et al. , 1996 ). The presence<br />

<strong>of</strong> a putative binding site for the progesterone receptor<br />

in the GH promoter <strong>of</strong> human, rat, mouse, and dog makes it<br />

likely that progestin-induced GH expression is a direct effect<br />

<strong>of</strong> activated PRs on the GH gene promoter ( Lantinga-van<br />

Leeuwen et al. , 2002 ) .<br />

Apart from the mammary gland, extrapituitary GH<br />

expression seems to be widespread throughout the body.<br />

GH functions already as an early local embryonic growth,<br />

and differentiation factor, including the neural tube, before<br />

pituitary GH expression is detectable ( Sanders and Harvey,<br />

2004 ). Furthermore, GH expression is found in the postnatal<br />

rat lung ( Beyea et al. , 2005 ), chicken testis ( Harvey et al. ,<br />

2004 ) and canine lymphomas ( Lantinga van Leeuwen et al. ,<br />

2000 ), insulinomas ( Robben et al. , 2002 ), and growth plate<br />

or osteosarcomas ( Kirpensteijn et al. , 2002 ).<br />

c . (Pro)hormone<br />

GH is a single-chain polypeptide. It contains two intrachain<br />

disulfide bridges and has an apparent molecular weight <strong>of</strong><br />

22,000. In humans, a small fraction <strong>of</strong> circulating GH has a<br />

molecular weight <strong>of</strong> 20 kDa because <strong>of</strong> alternative splicing<br />

<strong>of</strong> the pituitary GH gene. The metabolic effects are comparable<br />

to the normal 22 kDa form ( Hayakawa et al. , 2004 ).<br />

The amino acid sequence <strong>of</strong> GH belongs to the best-known<br />

sequences <strong>of</strong> pituitary hormones among species ( Fig. 18-11 ).<br />

The sequences <strong>of</strong> canine and porcine GH are identical and<br />

very similar to the horse. The canine and porcine sequence is<br />

suggested to be identical to the GH sequence for the ancestral<br />

placental mammal ( Forsyth and Wallis, 2002 ).<br />

In cattle, a polymorphism in the GH gene exists, resulting<br />

in four GH variants that can arise from two possible<br />

N-terminal amino acids (phenylalanine or alanine) and two<br />

amino acids in position 127 (leucine or valine). The transmission<br />

<strong>of</strong> the trait <strong>of</strong> high milk production was greater for<br />

homozygous leucine-127 in Holstein cows and valine-127<br />

in Jersey cows ( Lucy et al. , 1993 ). GH exhibits also heterogeneity<br />

because <strong>of</strong> posttranscriptional processing<br />

that may vary in binding to the plasma GH binding protein<br />

(GHBP) or biological effects ( De Palo et al. , 2006 ).<br />

The glycine in the third α -helix <strong>of</strong> bovine GH (G118) and<br />

human GH (G120) is crucial for biological functioning <strong>of</strong><br />

GH. Substitution <strong>of</strong> this glycine results in a molecule without<br />

growth-promoting activity that inhibits the actions <strong>of</strong><br />

GH in vitro and in vivo ( Kopchick, 2003 ).<br />

d . Secretion<br />

The release <strong>of</strong> GH by the pituitary is regulated by a variety<br />

<strong>of</strong> factors ( Fig. 18-12 and Table 18-5 ). The integration <strong>of</strong><br />

all these factors results in a pulsatile release <strong>of</strong> GH. In the<br />

female dog, plasma GH pulse patterns are dependent on the<br />

estrus cycle. In the early luteal phase, elevated basal GH<br />

concentrations are associated with a low pulse frequency<br />

<strong>of</strong> 2 peaks/12 h, whereas at anestrus lower basal GH concentrations<br />

are found with an enhanced pulse frequency <strong>of</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!