15.02.2013 Views

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pressure wave reflection (in pipes) (continued)<br />

at branches in a pipe (continued)<br />

complete solutions: one <strong>and</strong> two supplier<br />

pipes, 118-122<br />

First Law <strong>of</strong> Thermodynamics, application <strong>of</strong>,<br />

120-121<br />

McGinnity non-isentropic solution for,<br />

117-119<br />

net mass flow rate (at the junction), 115<br />

pressure amplitude ratios, general solution<br />

for, 116<br />

pressure loss equations (one/two supplier<br />

pipes), 121-122<br />

pressure/pressure amplitude ratios (one/two<br />

supplier pipes), 116-117<br />

stagnation enthalpies (one/two supplier<br />

pipes), 121<br />

temperature-entropy curves (one/two supplier<br />

pipes), 120<br />

unsteady flow at three-way branch (diagram),<br />

115<br />

at contractions in pipe area<br />

introduction, 105<br />

Benson "constant pressure" criterion, 106<br />

First law <strong>of</strong> Thermodynamics, application <strong>of</strong>,<br />

106, 107<br />

gas properties (functions <strong>of</strong>), 105<br />

isentropic flow in, 105<br />

mass flow continuity equation, 106, 107<br />

Newton-Raphson <strong>and</strong> Gaussian Elimination<br />

methods, 107<br />

numerical examples, 113-114<br />

reference state conditions, 106<br />

sonic particle velocity, solution for, 107-108<br />

at duct boundaries<br />

introduction, 88-90<br />

compression wave at closed end, 91-92<br />

compression wave at open end, 92-93<br />

engine manifolds, reflection possibilities in<br />

(diagram), 89<br />

expansion wave at plain open end, 95-97<br />

expansion wave inflow at bellmouth open<br />

end,93-95<br />

Newton-Raphson method (for expansion<br />

wave reflected pressure), 96-97<br />

notation for reflection/transmission, 90-91<br />

wave reflection criteria (typical pipes), 91<br />

611<br />

Index<br />

at expansions in pipe area<br />

Benson "constant pressure" criterion, 103,<br />

104<br />

continuity equation (for mass flow), 102,103<br />

First Law <strong>of</strong> Thermodynamics, application <strong>of</strong>,<br />

102, 104<br />

flow momentum equation, 103, 104<br />

numerical examples, 113-114<br />

particle flow diagram (simple expansion/contraction),<br />

102<br />

sonic particle velocity, solution for, 104-105<br />

temperature-entropy curves (isentropic,<br />

non-isentropic), 101<br />

turbulent vortices <strong>and</strong> particle flow separation,<br />

101<br />

at gas discontinuities<br />

introduction, 85-86<br />

complex case: variable gas composition,<br />

87-88<br />

conservation <strong>of</strong> mass <strong>and</strong> momentum, 86-87<br />

energy flow diagram, 86<br />

simple case: common gas composition, 87<br />

inflow from a cylinder<br />

introduction <strong>and</strong> discussion, 135-136<br />

First Law <strong>of</strong> Thermodynamics, application <strong>of</strong>,<br />

138,139<br />

flow diagram, 136<br />

gas properties (functions <strong>of</strong>), 136<br />

mass flow continuity equation, 138, 139<br />

numerical examples, 140-142<br />

pressure amplitude ratios, 138<br />

reference state conditions, 137<br />

sonic particle velocity, solution for, 139-140<br />

temperature-entropy diagrams, 136, 137<br />

outflow from a cylinder<br />

introduction <strong>and</strong> discussion, 127-129<br />

First Law <strong>of</strong> Thermodynamics, application <strong>of</strong>,<br />

130-131, 132<br />

flow diagram, 128<br />

flow momentum equation, 131, 132<br />

gas properties (functions <strong>of</strong>), 130<br />

mass flow continuity equation, 130<br />

numerical examples, 133-135<br />

pressure amplitude ratios, 131<br />

reference state conditions, 130<br />

sonic particle velocity, solution for, 132-133<br />

stratified scavenging, significance <strong>of</strong>, 129,<br />

163

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!