15.02.2013 Views

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Design</strong> <strong>and</strong> <strong>Simulation</strong> <strong>of</strong> <strong>Two</strong>-<strong>Stroke</strong> <strong>Engines</strong><br />

QUB (Queen's University <strong>of</strong> Belfast) (continued)<br />

QUB 270 cross-scavenged airhead-stratified<br />

engine (continued)<br />

bsfc vs. rpm, 511<br />

bsHCvs. rpm, 511-512<br />

QUB 400 research engine<br />

AFR vs. oxygen emissions, 473, 475<br />

bmep, AFR effect on, 472, 474, 476<br />

bsCO, AFR effect on, 473-475<br />

bsHC vs. air-fuel ratio, 473, 476<br />

measured performance vs. AFR, 472-473<br />

QUB LS400 SI engine<br />

combustion efficiency, 294, 296<br />

heat release analysis, 294, 295<br />

mass fraction burned, 294, 295<br />

QUB 500rv research engine (various fueling)<br />

description <strong>and</strong> configuration, 522<br />

multi-cylinder engine, basis for, 530<br />

poppet valve timing, 523<br />

test parameters (described), 523<br />

stratified combustion in, 529-530<br />

bmep vs. AFR (full load), 523<br />

bmep vs. AFR (light load), 529<br />

bsfc vs. AFR (full load), 524<br />

bsfc vs. AFR (light load), 526<br />

bsHC vs. AFR (full load), 524<br />

bsHC vs. AFR (light load), 526<br />

bsNOx vs. AFR (full load), 525<br />

bsNOx vs. AFR (light load), 526, 527<br />

Rankine-Hugoniot equations<br />

shock waves in unsteady gas flow, 75-77<br />

Rassweiler, G.M.<br />

expression for incremental heat release (SI engines),<br />

293<br />

Reed valves<br />

introduction <strong>and</strong> discussion, 17<br />

charging alternatives for, 17<br />

design <strong>of</strong>, empirical<br />

carburetor flow diameter, determination <strong>of</strong>,<br />

453<br />

dummy reed block angle, use <strong>of</strong>, 455<br />

empirical design, introduction to, 446-447<br />

empirical design process, criteria for, 451<br />

glass-fiber reed petals, durability <strong>of</strong>, 455<br />

as pressure-loaded cantilevered beam,<br />

453-454<br />

614<br />

reed block, rubber-coated (with steel reeds<br />

<strong>and</strong> stop plate), 447<br />

reed flow area (Ar(j), determination <strong>of</strong>, 452<br />

reed petal materials, 446, 451, 455<br />

reed port area (Aq,), effective, 452<br />

reed tip lift behavior, 448-450, 453<br />

REED VALVE DESIGN computer program,<br />

452, 454-455<br />

stop-plate radius, determination <strong>of</strong>, 454<br />

vibration <strong>and</strong> amplitude criteria, 453<br />

see also Specific time area (Asv)<br />

design <strong>of</strong>, general<br />

design dimensions (reed petal, reed block),<br />

367<br />

as pressure-loaded cantilevered beam,<br />

368-369<br />

in racing motorcycle engine simulation, 394,<br />

401-402<br />

reed block, flow restrictions from, 369<br />

reed block, placement <strong>and</strong> function <strong>of</strong>, 368<br />

reed flow area (Arcj), determination <strong>of</strong>, 369<br />

reed port area (A^,), effective, 369<br />

reed tip lift ratio, 370<br />

in Gr<strong>and</strong> Prix motorcycle racing engine, 17,19<br />

reed vs. disc valves (discussion), 446-447<br />

typical configurations, 16, 367<br />

Reid, M.G.O.<br />

mass fraction burned experimental data (SI engine),<br />

310-312<br />

Reimann variables<br />

in simulation <strong>of</strong> engines (using unsteady gas<br />

flow), 142, 143<br />

research funding, comment on, 192<br />

Reynolds number<br />

in crankcase heat transfer analysis, 376<br />

<strong>and</strong> heat release analysis (SI engines), 305-306<br />

in heat release analysis (SI engines), 305-306<br />

in pressure wave propagation friction factor<br />

(straight pipes), 82<br />

in scavenging flow (experimental assessment<br />

<strong>of</strong>), 223<br />

Ricardo Comet (IDI diesel engine)<br />

combustion chamber geometry, 317<br />

Rich limit (for diesel combustion), 288<br />

Rich mixture combustion, 288, 299-300<br />

Rootes-Tilling-Stevens<br />

diesel road engines, 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!