15.02.2013 Views

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

Design and Simulation of Two Stroke Engines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Simulation</strong>, engine<br />

See Computer modeling (various); GPB engine<br />

simulation model<br />

Smoke, exhaust<br />

from compression ignition, 288<br />

general comments on, 13, 288, 465<br />

Spark-ignition systems<br />

effectiveness <strong>of</strong>, 285<br />

in two-stroke engines, 282-284<br />

see also Combustion processes<br />

Specific time area (Asv)<br />

introduction to<br />

Asv for exhaust blowdown (measured), 417,<br />

420, 422-423<br />

Asv for exhaust ports (measured), 420,<br />

422-423<br />

Asv for inlet ports (measured), 420-421, 423<br />

Asv for transfer ports (measured), 420-421,<br />

423<br />

basic geometry <strong>of</strong>, 417<br />

derivation <strong>of</strong> ASVi 419-420, 424-425<br />

determination <strong>of</strong> measured Asv values,<br />

424-426<br />

mass flow rates, equations for, 417-419<br />

port areas vs. crankshaft angle (piston control),<br />

417<br />

TTMEAREA TARGETS computer program,<br />

423-424<br />

in chainsaw engine empirical design<br />

Asv values for (from TIMEAREA TARGETS<br />

program), 424<br />

Asv values for (measured), 426<br />

cylinder diagram (computer-generated), 418<br />

engine air flow (DR) vs. Asvx 427-430<br />

engine torque vs. Asvx> 427, 429<br />

exhaust port timing, effect on Asv <strong>of</strong>, 426-427<br />

exhaust port timing, effect on performance<br />

characteristics, 426-428<br />

hydrocarbon emissions vs. Asvx 427-430<br />

specific fuel consumption vs. Asvx 427-430<br />

transfer port timing, effect on Asv <strong>of</strong>, 427,<br />

429<br />

transfer port timing, effect on performance<br />

characteristics, 429-430<br />

typical Asv (computed), 425<br />

in disc valve empirical design<br />

introduction, 456-457<br />

carburetor flow diameter, 458<br />

619<br />

Index<br />

conventional vs. SI units, 459<br />

disc valve timing vs. induction port area, 457<br />

maximum port area, 457, 458<br />

outer port edge radius, 458<br />

total opening period, 457<br />

in racing motorcycle engine empirical design<br />

Asv values for (from TIMEAREA TARGETS<br />

program), 424<br />

Asv values for (measured), 426<br />

cylinder diagram (computer-generated), 425<br />

in reed valve empirical design<br />

introduction, 450-451<br />

Asvj calculation <strong>of</strong>, 451<br />

carburetor flow diameter, estimation <strong>of</strong>, 453<br />

design criteria for, 451<br />

effective reed port area, A,p 369, 462<br />

REED VALVE DESIGN computer program,<br />

452, 454-455<br />

required reed flow, Ar(j? 369, 452<br />

vibration/amplitude criteria, 453-454, 455<br />

concluding remarks, 455-456<br />

Speed <strong>of</strong> rotation<br />

piston speed, influence <strong>of</strong>, 44-45<br />

Squish action<br />

introduction <strong>and</strong> discussion<br />

CFD analysis, discussion <strong>of</strong>, 325-326<br />

compression behavior (squish <strong>and</strong> bowl volumes),<br />

327<br />

compression process in (ideal, isentropic),<br />

327-328<br />

example: QUB cross-scavenged engine, 325<br />

gas mass flow, 328<br />

squish area vs. combustion chamber design,<br />

329-330<br />

squish kinetic energy, 330, 331-332<br />

squish pressure ratio, derivation <strong>of</strong>, 327<br />

squish pressure vs. cylinder <strong>and</strong> bowl pressures,<br />

327<br />

squish velocity, derivation <strong>of</strong>, 328<br />

state conditions, equalization <strong>of</strong>, 327<br />

combustion chamber designs for<br />

introduction, 331<br />

central squish system, 338-339<br />

design example: HEMI-SPHERE CHAM­<br />

BER program, 337<br />

in DI diesel engines, 334, 335<br />

kinetic energy vs. chamber type, 331-332<br />

squish velocity vs. chamber type, 331-332

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!