07.04.2013 Views

Dealing with salinity in Wheatbelt Valleys - Department of Water

Dealing with salinity in Wheatbelt Valleys - Department of Water

Dealing with salinity in Wheatbelt Valleys - Department of Water

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Commander, Schoknecht, Verboom and Caccetta<br />

Down valley migration also stands out <strong>in</strong> the flat<br />

trunk valley (FV) that has been planated by fluvial<br />

activity. In this, one encounters the ‘rivers’ <strong>of</strong> deep<br />

sandy duplexes (DSDs) referred to <strong>in</strong> the soil<br />

development section. An example <strong>of</strong> where shallow<br />

sandy and loamy duplexes occur on the ‘<strong>in</strong>terfluves’<br />

is designated by SSD. The bright white areas<br />

designated RC represent ferrug<strong>in</strong>ous loams and clays<br />

that tend to be removed from areas <strong>of</strong> active flow.<br />

CONCLUSIONS<br />

The landscape <strong>of</strong> the wheatbelt valleys is <strong>of</strong><br />

considerable antiquity, orig<strong>in</strong>at<strong>in</strong>g at least some<br />

50 million years ago, and modified s<strong>in</strong>ce. The north<br />

flow<strong>in</strong>g rivers <strong>in</strong> the zone <strong>of</strong> ancient dra<strong>in</strong>age are<br />

broad and depositional <strong>in</strong> their upper reaches, which<br />

may reflect reversal <strong>of</strong> dra<strong>in</strong>age direction. Valley<br />

floors are now flat, <strong>with</strong> very slight gradients.<br />

Knowledge <strong>of</strong> the age <strong>of</strong> the palaeochannel<br />

sediments has emerged <strong>in</strong> the last decade <strong>with</strong> the<br />

recognition <strong>of</strong> two dist<strong>in</strong>ct phases <strong>of</strong> sedimentation,<br />

<strong>in</strong> the Eocene, and <strong>in</strong> the Late Miocene – Early<br />

Pliocene. Palaeochannel sediments, <strong>with</strong> their sandy<br />

basal layers, occupy only a small proportion <strong>of</strong> the<br />

broad valley floors. Elsewhere the valley sediments<br />

are composed ma<strong>in</strong>ly <strong>of</strong> sandy clay, overly<strong>in</strong>g<br />

crystall<strong>in</strong>e bedrock which is also weathered to form a<br />

sandy clay (saprolite).<br />

Valley soils fall <strong>in</strong>to three dist<strong>in</strong>ct landscape<br />

associations, a hydro-aeolian zone, a fluvial zone and<br />

a colluvial zone. The role <strong>of</strong> biochemical processes is<br />

be<strong>in</strong>g seen as <strong>in</strong>creas<strong>in</strong>gly important <strong>in</strong> soil formation.<br />

Comb<strong>in</strong><strong>in</strong>g digital elevation models <strong>with</strong> soil and<br />

radiometric data allows new <strong>in</strong>sights <strong>in</strong>to soil genesis<br />

and distribution.<br />

The availability <strong>of</strong> digital elevation models allows an<br />

analysis <strong>of</strong> valley shape on a local scale, and a<br />

def<strong>in</strong>ition <strong>of</strong> valley forms us<strong>in</strong>g water accumulation<br />

models. This has the potential to greatly assist land<br />

and water management.<br />

REFERENCES<br />

Anand, R.R., Gilkes, R.J., Armatage, T.M. & Hillyer, J.W.<br />

(1985). Feldspar weather<strong>in</strong>g <strong>in</strong> lateritic saprolite. Clays<br />

and Clay M<strong>in</strong>erals, 33: 31-43.<br />

Appleyard, S.J. (1994). Hydrogeology <strong>of</strong> a Tertiary aquifer<br />

<strong>in</strong> the North Stirl<strong>in</strong>gs Land Conservation District, Great<br />

Southern Region. Western Australia Geological Survey,<br />

Hydrogeology Report 1994/18 (unpublished).<br />

– 24 –<br />

Beard, J. (1998). Position and developmental history <strong>of</strong> the<br />

central watershed <strong>of</strong> the Western Shield Western<br />

Australia. Jour. Roy. Soc. W.A., 81: 157-164.<br />

Beard, J. (1999). Evolution <strong>of</strong> the river systems <strong>of</strong> the<br />

south west dra<strong>in</strong>age division, Western Australia. Jour. Roy.<br />

Soc. W.A., 82: 147-164.<br />

Bettenay, E. & H<strong>in</strong>gston, F.J. (1961). Soils and land use <strong>of</strong><br />

the Merred<strong>in</strong> area, Western Australia. CSIRO Division <strong>of</strong><br />

Soils, Soil and Land Use Series No. 41.<br />

Bettenay, E. & H<strong>in</strong>gston, F.J. (1964). Development and<br />

distribution <strong>of</strong> soils <strong>in</strong> the Merred<strong>in</strong> area, Western<br />

Australia. Aust. Jour. Soil Res., 2: 173-186.<br />

Bettenay, E. & Mulcahy, M.J. (1972). Soil and landscape<br />

studies <strong>in</strong> Western Australia: (2) Valley form and surface<br />

features <strong>of</strong> the South-West Dra<strong>in</strong>age Division. Jour. Geol.<br />

Soc. Aust., 18(4): 359-369.<br />

Bettenay, E. (1962). The salt lake systems and their<br />

associated aeolian features <strong>in</strong> the semi arid regions <strong>of</strong><br />

Western Australia. Jour. Soil Sci., 13(1): 10-17.<br />

Bettenay, E., Blackmore, A.V. & H<strong>in</strong>gston, F.J. (1964).<br />

Aspects <strong>of</strong> the Hydrologic Cycle and related <strong>sal<strong>in</strong>ity</strong> <strong>in</strong> the<br />

Belka Valley, Western Australia. Aust. Jour. Soil Res., 2:<br />

187-210.<br />

B<strong>in</strong>t, A.N. (1981). An Early Pliocene Pollen assemblage<br />

from Lake Tay, South-western Australia, and its<br />

phytogeographic implications. Australian Journal <strong>of</strong> Botany,<br />

29: 277-291.<br />

Bird, M.I. & Chivas, A.R. (1993). Geomorphic and<br />

palaeoclimatic implications <strong>of</strong> an oxygen isotope<br />

chronology for Australian deeply weathered pr<strong>of</strong>iles. Aust.<br />

Jour. Earth Sci., 40: 345-358.<br />

Bowler, J.M. (1976). Aridity <strong>in</strong> Australia: Age Orig<strong>in</strong>s and<br />

Expression <strong>in</strong> Aeolian Landforms and Sediments. Earth-<br />

Science Reviews, 12: 279-310.<br />

Butt, C.R.M. & Zeegers, H. (1992). Handbook <strong>of</strong><br />

Exploration Geochemistry. Elsevier, Amsterdam.<br />

Caccetta, P. (1997). Remote Sens<strong>in</strong>g, Geographical<br />

Information Systems and Bayesian Knowledge-Based<br />

Methods for Monitor<strong>in</strong>g Land Condition, PhD thesis, School<br />

<strong>of</strong> Comput<strong>in</strong>g, Curt<strong>in</strong> University <strong>of</strong> Technology.<br />

Caccetta, P. (1999a). Technical note – A simple approach<br />

for reduc<strong>in</strong>g discont<strong>in</strong>uities <strong>in</strong> digital elevation models,<br />

CMIS W.A, July 1999.<br />

Caccetta, P. (1999b). Some methods for deriv<strong>in</strong>g variables<br />

from digital elevation models for the purpose <strong>of</strong> analysis,<br />

partition<strong>in</strong>g <strong>of</strong> terra<strong>in</strong> and provid<strong>in</strong>g decision support for<br />

what-if scenarios, Report CMIS 99/164, February 1999,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!