25.01.2013 Views

Four degrees and beyond: the potential for a global ... - Amper

Four degrees and beyond: the potential for a global ... - Amper

Four degrees and beyond: the potential for a global ... - Amper

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Humid tropical <strong>for</strong>ests on a warmer planet 157<br />

HTF niche, or ‘die-back’. In contrast, <strong>the</strong> majority of HTFs in South <strong>and</strong> Insular<br />

Asia are not predicted to face climate-driven die-back. In Africa, <strong>the</strong>re is <strong>potential</strong><br />

<strong>for</strong> both HTF contraction <strong>and</strong> expansion. In all regions, <strong>the</strong> <strong>potential</strong> to exp<strong>and</strong> is<br />

due to both <strong>the</strong> more favourable precipitation regime, <strong>and</strong> <strong>the</strong> retreat of <strong>the</strong> lowtemperature<br />

threshold. If CO2 has an effect on water balance as predicted, <strong>the</strong>n<br />

<strong>the</strong> expansion of <strong>the</strong> HTF niche is more likely than <strong>the</strong> contraction. In practice,<br />

in many places with high agricultural pressure, it is more plausible <strong>for</strong> HTFs to<br />

be locally destroyed than naturally colonize new areas, although apparent <strong>for</strong>est<br />

expansion <strong>and</strong> woody encroachment has been reported in many areas of Africa.<br />

Future extent of HTFs may also be controlled by o<strong>the</strong>r factors, <strong>for</strong> example,<br />

critically high temperatures, which are not yet fully understood.<br />

While this study has its limitations by not incorporating fully <strong>the</strong> (poorly<br />

understood) physiological responses to temperature (although some temperature<br />

effect is implicit in <strong>the</strong> CO2 effect on water-use efficiency), it makes an<br />

important contribution in highlighting areas of <strong>potential</strong> risk <strong>and</strong> resilience to<br />

climate change, <strong>and</strong> incorporating multiple climate models <strong>and</strong> high-resolution<br />

climatology. The presented approach is a step towards a more biodiversity<strong>and</strong><br />

conservation-relevant interpretation of <strong>the</strong> climate modelling results. Future<br />

improvements to <strong>the</strong> approach could include higher resolution climate patterns,<br />

more complex HTF niches, more sophisticated downscaling, <strong>and</strong> sensitivity<br />

analysis to <strong>the</strong> critical temperatures <strong>and</strong> acclimation rates.<br />

The authors thank David Galbraith, Toby Mar<strong>the</strong>ws <strong>and</strong> Marta Szulkin <strong>for</strong> comments, Dan<br />

Bebber <strong>for</strong> advice on statistical analysis, <strong>and</strong> Gil Lizcano <strong>for</strong> technical support. Comments from<br />

two anonymous reviewers <strong>and</strong> <strong>the</strong> editor greatly improved <strong>the</strong> manuscript. We acknowledge <strong>the</strong><br />

modelling groups, <strong>the</strong> Program <strong>for</strong> Climate Model Diagnosis <strong>and</strong> Intercomparison, <strong>and</strong> <strong>the</strong> World<br />

Climate Research Programme (WCRP) Working Group on Coupled Modelling <strong>for</strong> <strong>the</strong>ir roles in<br />

making available <strong>the</strong> WCRP Coupled Model Intercomparison Project 3 multi-model dataset.<br />

References<br />

1 Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, H. & Branthomme, A. 2005 Tropical <strong>for</strong>est<br />

cover change in <strong>the</strong> 1990s <strong>and</strong> options <strong>for</strong> future monitoring. Phil. Trans. R. Soc. B 360, 373–384.<br />

(doi:10.1098/rstb.2004.1590)<br />

2 Dirzo, R. & Raven, P. H. 2003 Global state of biodiversity <strong>and</strong> loss. Annu. Rev. Environ. Resour.<br />

28, 137–167. (doi:10.1146/annurev.energy.28.050302.105532)<br />

3 van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson,<br />

R. B., Collatz, G. J. & R<strong>and</strong>erson, J. T. 2009 CO2 emissions from <strong>for</strong>est loss. Nat. Geosci. 2,<br />

737–738. (doi:10.1038/ngeo671)<br />

4 Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A. & Laurance, W. F. 2009 Changing ecology<br />

of tropical <strong>for</strong>ests: evidence <strong>and</strong> drivers. Annu. Rev. Ecol. Evol. Syst. 40, 529–549. (doi:10.1146/<br />

annurev.ecolsys.39.110707.173345)<br />

5 ter Steege, H. et al 2003 A spatial model of tree alpha-diversity <strong>and</strong> tree density <strong>for</strong> <strong>the</strong> Amazon.<br />

Biodivers. Conserv. 12, 2255–2277. (doi:10.1023/A:1024593414624)<br />

6 Saatchi, S. S., Houghton, R. A., Alvala, R., Soares, J. V. & Yu, Y. 2007 Distribution of<br />

aboveground live biomass in <strong>the</strong> Amazon basin. Glob. Change Biol. 13, 816–837. (doi:10.1111/<br />

j.1365-2486.2007.01323.x)<br />

7 Baccini, A., Laporte, N., Goetz, S. J., Sun, M. &Dong, H. 2008 A first map of tropical<br />

Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 3, 045011.<br />

(doi:10.1088/1748-9326/3/4/045011)<br />

8 FAO. 2001 Global Forest Resources Assessment 2000. FAO <strong>for</strong>estry paper 140. Rome, Italy: FAO.<br />

9 FAO. 2006 Global Forest Resources Assessment 2005. FAO <strong>for</strong>estry paper 147. Rome, Italy: FAO.<br />

10 Prentice, K. C. 1990 Bioclimatic distribution of vegetation <strong>for</strong> general-circulation model studies.<br />

J. Geophys. Res. Atmos. 95, 11 811–11 830. (doi:10.1029/JD095iD08p11811)<br />

Phil. Trans. R. Soc. A (2011)<br />

Downloaded from<br />

rsta.royalsocietypublishing.org on November 30, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!