25.01.2013 Views

Four degrees and beyond: the potential for a global ... - Amper

Four degrees and beyond: the potential for a global ... - Amper

Four degrees and beyond: the potential for a global ... - Amper

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

160 P. Zelazowski et al.<br />

51 Baron, C., Sultan, B., Balme, M., Sarr, B., Traore, S., Lebel, T., Janicot, S. & Dingkuhn, M.<br />

2005 From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact.<br />

Phil. Trans. R. Soc. B 360, 2095–2108. (doi:10.1098/rstb.2005.1741)<br />

52 Fowler, H. J., Blenkinsop, S. & Tebaldi, C. 2007 Linking climate change modelling to impacts<br />

studies: recent advances in downscaling techniques <strong>for</strong> hydrological modelling. Int. J. Climatol.<br />

27, 1547–1578. (doi:10.1002/joc.1556)<br />

53 Hunting<strong>for</strong>d, C. et al. 2007 IMOGEN: an intermediate complexity climate model to evaluate<br />

terrestrial impacts of a changing climate. Geosci. Model Dev. Discuss. 3, 1161–1184.<br />

(doi:10.5194/gmdd-3-1161-2010)<br />

54 Hulme, M., Raper, S. C. B. & Wigley, T. M. L. 1995 An integrated framework to address climatechange<br />

(escape) <strong>and</strong> fur<strong>the</strong>r developments of <strong>the</strong> <strong>global</strong> <strong>and</strong> regional climate modules (magicc).<br />

Energy Policy 23, 347–355. (doi:10.1016/0301-4215(95)90159-5)<br />

55 Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. 2008 Emulating IPCC AR4 atmosphere–<br />

ocean <strong>and</strong> carbon cycle models <strong>for</strong> projecting <strong>global</strong>-mean hemispheric <strong>and</strong> l<strong>and</strong>/ocean<br />

temperature: MAGICC 6.0. Atmos. Chem. Phys. 8, 6153–6272. (doi:10.5194/acpd-8-6153-2008)<br />

56 Schiermeier, Q. 2010 The real holes in climate science. Nature 463, 284–287. (doi:10.1038/<br />

463284a)<br />

57 Clark, D. A. 2004 Sources or sinks? The responses of tropical <strong>for</strong>ests to current <strong>and</strong> future<br />

climate <strong>and</strong> atmospheric composition. Phil. Trans. R. Soc. Lond. B 359, 477–491. (doi:10.1098/<br />

rstb.2003.1426)<br />

58 Sung, D.-Y., Kaplan, F., Lee, K.-J. & Guy, C. L. 2003 Acquired tolerance to temperature<br />

extremes. Trends Plant. Sci. 8, 179–187. (doi:10.1016/S1360-1385(03)00047-5)<br />

59 Atkin, O. K., Bruhn, D., Hurry, V. M. & Tjoelker, M. G. 2005 The hot <strong>and</strong> <strong>the</strong> cold:<br />

unravelling <strong>the</strong> variable response of plant respiration to temperature. Funct. Plant Biol. 32,<br />

87–105. (doi:10.1071/FP03176)<br />

60 Kattge, J. & Knorr, W. 2007 Temperature acclimation in a biochemical model of<br />

photosyn<strong>the</strong>sis: a reanalysis of data from 36 species. Plant Cell Environ. 30, 1176–1190.<br />

(doi:10.1111/j.1365-3040.2007.01690.x)<br />

61 Berry, J. & Bjorkman, O. 1980 Photosyn<strong>the</strong>tic response <strong>and</strong> adaptation to temperature<br />

in higher plants. Annu. Rev. Plant Physiol. 31, 491–543. (doi:10.1146/annurev.pp.31.060180.<br />

002423)<br />

62 Cunningham, S. C. & Read, J. 2003 Do temperate rain<strong>for</strong>est trees have a greater ability to<br />

acclimate to changing temperatures than tropical rain<strong>for</strong>est trees? New Phytol. 157, 55–64.<br />

(doi:10.1046/j.1469-8137.2003.00652.x)<br />

63 Kositsup, B., Montpied, P., Kasemsap, P., Thaler, P., Ameglio, T. & Dreyer, E. 2009<br />

Photosyn<strong>the</strong>tic capacity <strong>and</strong> temperature responses of photosyn<strong>the</strong>sis of rubber trees (Hevea<br />

brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Trees Struct. Funct. 23,<br />

357–365. (doi:10.1007/s00468-008-0284-x)<br />

64 Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. &<br />

Martin, P. R. 2008 Impacts of climate warming on terrestrial ecto<strong>the</strong>rms across latitude. Proc<br />

Natl Acad. Sci. USA 105, 6668–6672. (doi:10.1073/pnas.0709472105)<br />

65 Le Page, Y., van der Werf, G. R., Morton, D. C. & Pereira, J. M. C. 2010 Modeling firedriven<br />

de<strong>for</strong>estation <strong>potential</strong> in Amazonia under current <strong>and</strong> projected climate conditions.<br />

J. Geophys. Res. 115, G03012. (doi:10.1029/2009JG001190)<br />

66 Hasler, N. & Avissar, R. 2007 What controls evapotranspiration in <strong>the</strong> Amazon basin?<br />

J. Hydrometeorol. 8, 380–395. (doi:10.1175/JHM587.1)<br />

67 Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Hunting<strong>for</strong>d, C., Wild, M. & Cox, P. M. 2009<br />

Impact of changes in diffuse radiation on <strong>the</strong> <strong>global</strong> l<strong>and</strong> carbon sink. Nature 458, 1014–1017.<br />

(doi:10.1038/nature07949)<br />

68 Gullison, R. E. et al. 2007 Tropical <strong>for</strong>ests <strong>and</strong> climate policy. Science 316, 985–986.<br />

(doi:10.1126/science.1136163)<br />

69 Ebeling, J. & Yasue, M. 2008 Generating carbon finance through avoided de<strong>for</strong>estation <strong>and</strong> its<br />

<strong>potential</strong> to create climatic, conservation <strong>and</strong> human development benefits. Phil. Trans. R. Soc.<br />

B 363, 1917–1924. (doi:10.1098/rstb.2007.0029)<br />

70 Aragao, L. & Shimabukuro, Y. E. 2010 The incidence of fire in Amazonian <strong>for</strong>ests with<br />

implications <strong>for</strong> REDD. Science 328, 1275–1278. (doi:10.1126/science.1186925)<br />

Phil. Trans. R. Soc. A (2011)<br />

Downloaded from<br />

rsta.royalsocietypublishing.org on November 30, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!