23.12.2012 Views

CMOS Optical Preamplifier Design Using Graphical Circuit Analysis

CMOS Optical Preamplifier Design Using Graphical Circuit Analysis

CMOS Optical Preamplifier Design Using Graphical Circuit Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Frequency (MHz)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

5<br />

R f (kΩ)<br />

10<br />

15<br />

20<br />

15<br />

10<br />

5.2 Developing an Analytic <strong>Circuit</strong> Model 127<br />

5<br />

0<br />

−5<br />

−10<br />

Current Gain Kcm (dB)<br />

surface:ω p1<br />

Figure 5.16 Plot of pole frequencies and simulated bandwidth vs. feedback<br />

resistance and current mirror gain.<br />

Pole frequencies(MHz)<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

R f (kΩ)<br />

5<br />

10<br />

R f (kohms)<br />

15<br />

w p1 and w o vs. R f and Current Mirror Gain<br />

20<br />

15<br />

surface:ω p1<br />

10 5 0 −5 −10<br />

Current 20*logGain (Gain) K 10 cm (dB)<br />

−15<br />

ω o<br />

−15<br />

−20<br />

ring mesh - simulated<br />

bandwidth<br />

Figure 5.17 Plot of pole frequencies vs. feedback resistance and current<br />

mirror gain.<br />

ω o<br />

−20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!