27.08.2013 Views

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Resumenes 175<br />

los parámetros son todos positivos teniendo diferentes significados<br />

biológicos y los sistemas son analizados en el primer cuadrante. Se<br />

<strong>de</strong>muestra que:<br />

1) El punto <strong>de</strong> equilibrio (0,0) siempre es punto silla y que la naturaleza <strong>de</strong><br />

(K, 0) <strong>de</strong>pen<strong>de</strong> <strong>de</strong> la existencia <strong>de</strong> puntos <strong>de</strong> equilibrio al interior <strong>de</strong>l primer<br />

cuadrante.<br />

2) Existen condiciones en los parámetros para los cuales hay dos puntos <strong>de</strong><br />

equilibrio al interior <strong>de</strong>l primer cuadrante (positivos), o bien uno <strong>de</strong><br />

multiplicidad dos, o ninguno.<br />

3) Cuando colapsan los puntos críticos positivos, este único punto pue<strong>de</strong> ser<br />

un punto cúspi<strong>de</strong> <strong>de</strong> codimensión 2 (bifurcación <strong>de</strong> Bogdanovic-Takens).<br />

4) Existe una región en el espacio <strong>de</strong> parámetros don<strong>de</strong> dos ciclos límites<br />

pue<strong>de</strong>n coexistir.<br />

La extinción <strong>de</strong> la población <strong>de</strong> <strong>de</strong>predadores es posible porque el<br />

punto (K,0) es atractor cuando existen dos puntos <strong>de</strong> equilibrio positivos.<br />

Comparative study <strong>of</strong> Gause type predator-prey mo<strong>de</strong>ls with<br />

nonmonotonic functional response <strong>of</strong> rational type<br />

In this work we make a comparative analyze <strong>of</strong> two <strong>de</strong>terministic<br />

continuous-time predator-prey mo<strong>de</strong>ls <strong>of</strong> Gause type consi<strong>de</strong>ring a Holling<br />

type IV functional response which is nonmonotonic [10].<br />

The Gause type mo<strong>de</strong>ls [4] are characterized by the predator<br />

numerical response which is a function <strong>of</strong> functional response, correspond to<br />

a compartimental mo<strong>de</strong>ls or mass action, and are <strong>de</strong>scribed by a differential<br />

equations system <strong>of</strong> the form:<br />

⎧ dx<br />

⎪ = F(<br />

x)<br />

− y p ( x)<br />

dt<br />

X : ⎨<br />

⎪ dy<br />

= ( c p(<br />

x)<br />

− d)<br />

y<br />

⎪⎩<br />

dt<br />

where x = x(t) and y = y(t) indicate the predator and prey population size<br />

respectively for t > 0 (number <strong>of</strong> individual, <strong>de</strong>nsity or biomass). Function<br />

F(x) represents the prey growth rate and function p(x) is the predator<br />

functional response or consumption rate, that is, it indicates the change in<br />

the <strong>de</strong>nsity prey attached per unit time per predator as the prey <strong>de</strong>nsity<br />

changes.<br />

This function <strong>de</strong>scribes a type <strong>of</strong> antipredator behavior called group<br />

<strong>de</strong>fense or aggregation, that is, a phenomenon whereby predators<br />

<strong>de</strong>crease, or even prevented altogether, due to the increased ability <strong>of</strong> the<br />

prey to better <strong>de</strong>fend or disguise themselves when their number are large<br />

qx<br />

enough [2, 4, 9, 12, 13, 14, 15]. Most employed function is h(<br />

x)<br />

= 2<br />

x + a<br />

[5, 6, 7, 8, 9], <strong>de</strong>duced in [2]. However, in [15], the more general form<br />

qx<br />

h(<br />

x)<br />

= is used.<br />

2<br />

x + bx + a<br />

In above works [1, 11] we have <strong>de</strong>monstrate that using different<br />

form to nonmonotonic functional response change the bifurcation diagram<br />

<strong>of</strong> system and in this work we pretend find a generalization <strong>of</strong> this results.<br />

Mo<strong>de</strong>ls that we will study are <strong>de</strong>scribed by the following Kolmogorov type<br />

differential equations systems [3]:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!