27.08.2013 Views

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Resumenes 20<br />

don<strong>de</strong> x = x(t) e y = y(t) representan los tamaños <strong>de</strong> las poblaciones <strong>de</strong><br />

presas y <strong>de</strong>predadores respectivamente para t > 0; los parámetros son<br />

6<br />

todos positivos, esto es, ( , , , , , ) + ℜ ∈<br />

= c p a q K r µ , y tienen diferentes<br />

significados biológicos.<br />

Multiples Hopf bifurcations in Gause type predator-prey<br />

mo<strong>de</strong>ls with nonmonotonic functional response.<br />

In this work, we show a method for <strong>de</strong>termine the number <strong>of</strong> limit<br />

cycles surrounding a equilibrium point that can bifurcate from a weak or<br />

fine focus on a family <strong>of</strong> predator prey mo<strong>de</strong>l <strong>de</strong>scribed by two-or<strong>de</strong>r<br />

differential equations systems.<br />

The characteristic <strong>of</strong> Gause type mo<strong>de</strong>ls [4] is that the predator<br />

numerical responses is a function <strong>of</strong> functional response and correspond to<br />

a compartimental mo<strong>de</strong>ls or mass action. The predator functional response<br />

or consumption rate, measures the prey change <strong>de</strong>nsity rate per predator<br />

and per time unit [13].<br />

The type IV functional response <strong>de</strong>scribe the effect <strong>of</strong> <strong>de</strong>fence group<br />

or aggregation [1, 4, 5, 6, 16, 17, 18], which is a form <strong>of</strong> antipredator<br />

qx<br />

behavior [12]. Most usual form is <strong>de</strong>scribed by the function h(<br />

x)<br />

= 2<br />

x + a<br />

[7, 8, 9, 10, 14, 15], <strong>de</strong>duced in [2], where x = x(t) indicates the prey<br />

population size.<br />

The <strong>de</strong>termination <strong>of</strong> the number <strong>of</strong> limit cycles surrounding a<br />

equilibrium point it is based in the calculus <strong>of</strong> Liapunov quantities [2, 3, 11].<br />

For obtain this quantities the system must be expressed in a normal form<br />

[3]. Denoting λ = ( λ1,<br />

λ2,......,<br />

λN<br />

) the parameters vector <strong>of</strong> system, we assume<br />

that the coefficients <strong>of</strong> the Taylor series at the origin for the component<br />

functions <strong>of</strong> system are polynomial in the components <strong>of</strong> l..<br />

The Liapunov quantities are computed when the trace <strong>of</strong> Jacobian<br />

(community) matrix evaluated at the equilibrium point is zero, that is, l1 =<br />

0. We <strong>de</strong>note for Λ = ( 0,<br />

λ2,......,<br />

λN<br />

) the vector <strong>of</strong> variable parameters that<br />

<strong>de</strong>termuines a hypersurface on the parameter space <strong>of</strong> system, such as the<br />

Liapunov quantities are functions <strong>of</strong> those parameter named li with i =<br />

2,3,....., N . Of this manner, those quantities are obtained as functions <strong>of</strong><br />

polynomial coefficients, which at once are <strong>de</strong>pen<strong>de</strong>nts <strong>of</strong> the parameters <strong>of</strong><br />

original system.<br />

This methodology it will be applied to the Gause type predator-prey<br />

mo<strong>de</strong>l <strong>de</strong>scribed by the ordinary differential equations system:<br />

3<br />

⎧dx<br />

x q x y<br />

⎪ = r(<br />

1 − ) x − 4<br />

⎪ dt k x + a<br />

X µ<br />

: ⎨<br />

3<br />

⎪dy<br />

⎛ p x ⎞<br />

=<br />

⎪ ⎜ − c ⎟ y<br />

4<br />

⎩ dt ⎝ x + a ⎠

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!