27.08.2013 Views

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

Libro de Resúmenes / Book of Abstracts (Español/English)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Resumenes 176<br />

⎧<br />

2<br />

dx ⎛ x ⎞ qx ⎧dx<br />

⎛ x ⎞ qx<br />

⎪ = r⎜1<br />

− ⎟x<br />

− y 4 ⎪ = r⎜1<br />

− ⎟x<br />

− y 4<br />

⎪ dt ⎝ K ⎠ x + a ⎪ dt ⎝ K ⎠ x + a<br />

⎪<br />

⎪<br />

X µ : ⎨<br />

X µ : ⎨<br />

⎪<br />

2<br />

⎪<br />

⎪dy<br />

⎛ px ⎞<br />

=<br />

⎪ ⎜ − c ⎟ y<br />

⎪dy<br />

⎛ px ⎞<br />

=<br />

4<br />

⎩ dt ⎝ x + a ⎠<br />

⎪ ⎜ − c ⎟ y<br />

4<br />

⎩ dt ⎝ x + a ⎠<br />

parameters are all positives and have different biological meanings and<br />

systems are analyzed at the first quadrant. It is proved that<br />

1) (0,0) is always a saddle point meanwhile the nature <strong>of</strong> (K,0) <strong>de</strong>pen<strong>de</strong>nt if<br />

there exist equilibrium points at interior <strong>of</strong> the first quadrant.<br />

2) There are conditions on the parameters for which it has two, one or none<br />

positives equilibrium point.<br />

3) When collapse the positives equilibrium point, this is a cusp point <strong>of</strong><br />

codimension 2 (Bogdanovic-Takens bifurcation)<br />

4) There exist a region in the parameter space, where two limit cycles can<br />

coexist.<br />

Extinction <strong>of</strong> predators it is can possible when there are two positive<br />

equilibrium points, because (K,0) is an atractor equilibrium point.<br />

Referencias<br />

[1] Aguilera-Moya, A. and González-Olivares, E, 2004, A Gause type mo<strong>de</strong>l with<br />

a generalized class <strong>of</strong> nonmonotonic functional response, In R. Mondaini<br />

(Ed.) Proceedings <strong>of</strong> the Third Brazilian Symposium on Mathematical and<br />

Computational Biology, E-Papers Servicos Editoriais Ltda, Río <strong>de</strong> Janeiro,<br />

Vol. 2, 206-217.<br />

[2] Collings, J. B., 1997, The effect <strong>of</strong> the functional response on the bifurcation<br />

behavior <strong>of</strong> a mite predator-prey interaction mo<strong>de</strong>l, Journal <strong>of</strong> Mathematical<br />

Biology, 36.149-168.<br />

[3] Freedman, H. I., 1980. Deterministic Mathematical Mo<strong>de</strong>l in Population<br />

Ecology. Marcel Dekker.<br />

[4] Freedman, H. I., and Wolkowicz, G. S. W., 1986, Predator-prey systems with<br />

group <strong>de</strong>fence: The paradox <strong>of</strong> enrichment revisted, Bulletin <strong>of</strong> Mathematical<br />

Biology Vol 8 No. 5/6, 493-508.<br />

[5] González-Olivares, E. 2003. A predador-prey mo<strong>de</strong>l with nonmonotonic<br />

consumption function, In R. Mondaini (Ed.), Proceedings <strong>of</strong> the Second<br />

Brazilian

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!