28.11.2012 Aufrufe

Research Directory of the Brandenburg University of Applied Sciences

Research Directory of the Brandenburg University of Applied Sciences

Research Directory of the Brandenburg University of Applied Sciences

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Fig. 3.13: Thermograms<br />

at 50<br />

Hz frame rates <strong>of</strong><br />

a free falling ball<br />

(heated to a temperature<br />

<strong>of</strong> 70°C,<br />

start at a height<br />

<strong>of</strong> 1 m) measured<br />

with a LW bolometer<br />

camera SC<br />

2000 (left) and a<br />

MW InSb camera<br />

SC 6000 (right)<br />

with 1 ms integration<br />

time.<br />

mounted on a vibration insulated optical table. The<br />

sample holder was completely adjustable (sample<br />

movement in x-y-z-direction, rotation and tilt) in front<br />

<strong>of</strong> <strong>the</strong> microscope objective. Results have been analyzed<br />

using <strong>the</strong> RTools s<strong>of</strong>tware.<br />

Characteristics <strong>of</strong> Microscopic and HIGH-<br />

SPEED Thermography<br />

a) Time resolution<br />

In data sheets <strong>of</strong> imaging systems time resolution is<br />

usually just characterized by <strong>the</strong> frame rate as <strong>the</strong> relevant<br />

camera parameter. Mostly this value is assumed<br />

to be connected with <strong>the</strong> time resolution for <strong>the</strong> imaging<br />

analysis. A simple experiment demonstrates that<br />

<strong>the</strong> frame rate alone will not give <strong>the</strong> time resolution <strong>of</strong><br />

a camera. For this experiment a free falling rubber ball<br />

with a diameter <strong>of</strong> 3 cm was used. The rubber ball was<br />

heated to about 70°C. Starting at a height <strong>of</strong> 1m above<br />

<strong>the</strong> ground <strong>the</strong> free falling ball was analyzed by <strong>the</strong>rmal<br />

imaging with IR cameras for an object distance <strong>of</strong><br />

about 4 m. Fig. 3.13 depicts <strong>the</strong> results <strong>of</strong> <strong>the</strong> measurement<br />

using a bolometer camera SC2000 and <strong>the</strong> InSb<br />

camera SC6000 both operating with a frame rate <strong>of</strong> 50<br />

Hz.<br />

With increasing velocity <strong>of</strong> <strong>the</strong> ball during <strong>the</strong> free fall<br />

motion <strong>the</strong> SC2000 image <strong>of</strong> <strong>the</strong> ball becomes blurred<br />

due to <strong>the</strong> increasing speed <strong>of</strong> <strong>the</strong> ball. Fig. 3.14 depicts<br />

<strong>the</strong> results <strong>of</strong> a temperature pr<strong>of</strong>ile measurement<br />

along <strong>the</strong> falling line <strong>of</strong> <strong>the</strong> ball which for this image<br />

had already fallen about 92 cm. Two results are obvious.<br />

The measured temperature <strong>of</strong> <strong>the</strong> ball decreases<br />

to about 44°C and we observe nonzero temperature<br />

differences in a 16 cm range <strong>of</strong> <strong>the</strong> measured line pro-<br />

Wissenschaftliche Beiträge – Fachbereich Technik<br />

Scientific Articles – Department <strong>of</strong> Engineering<br />

file although <strong>the</strong> falling ball had only 3 cm in diameter.<br />

This behavior is caused by <strong>the</strong> time constant <strong>of</strong> <strong>the</strong><br />

bolometer detectors in <strong>the</strong> SC2000 camera. Thermal<br />

detectors as bolometers exhibit a time constant within<br />

<strong>the</strong> ms range. The measured temperature line pr<strong>of</strong>ile<br />

corresponds to <strong>the</strong> temperature rise and decay process<br />

<strong>of</strong> <strong>the</strong> bolometer sensors <strong>of</strong> <strong>the</strong> camera. It is not caused<br />

by <strong>the</strong> rolling read-out process <strong>of</strong> <strong>the</strong> bolometer<br />

FPA. If <strong>the</strong> camera is rotated by 90° <strong>the</strong> signal will be<br />

essentially <strong>the</strong> same.<br />

From <strong>the</strong> falling distance s <strong>the</strong> speed <strong>of</strong> <strong>the</strong> ball v can<br />

be calculated using v = gt with gravitational acceleration<br />

g = 9.81 m/s 2 . Therefore <strong>the</strong> falling distance shown<br />

in Fig. 3.13 can be transformed into a time scale using<br />

s = 1/2gt 2 , see Fig. 3.14, bottom.<br />

At <strong>the</strong> lower end <strong>of</strong> <strong>the</strong> ball at <strong>the</strong> largest falling<br />

distance in <strong>the</strong> IR image i.e. for <strong>the</strong> largest falling time,<br />

<strong>the</strong> respective bolometer detector signal starts to rise<br />

due to IR radiation from <strong>the</strong> ball. Behind <strong>the</strong> actual<br />

position <strong>of</strong> <strong>the</strong> ball in <strong>the</strong> image i.e. at those detectors,<br />

who no longer receive IR-radiation from <strong>the</strong> ball, <strong>the</strong>re<br />

is a drop in <strong>the</strong> signal, characterized by <strong>the</strong> detector<br />

time constant. Therefore <strong>the</strong> observed signal decay on<br />

<strong>the</strong> small time side <strong>of</strong> <strong>the</strong> signal directly reflects this<br />

time constant. Fig. 3.14, bottom depicts this detector<br />

signal rise and decay. For easier analysis, <strong>the</strong> signal<br />

was normalized to <strong>the</strong> maximum temperature difference<br />

�T max .<br />

One can estimate an exponential time dependence<br />

with a time constant <strong>of</strong> about 10 ms. The time resolution<br />

<strong>of</strong> <strong>the</strong> camera is limited by this time constant.<br />

To get a correct temperature reading one needs at<br />

least a 99% signal measurement. This corresponds to<br />

a measurement time <strong>of</strong> 5� = 50 ms. At a frame rate <strong>of</strong><br />

Forschungsbericht <strong>Research</strong> Report 2007 – 2010 81

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!