28.11.2012 Aufrufe

Research Directory of the Brandenburg University of Applied Sciences

Research Directory of the Brandenburg University of Applied Sciences

Research Directory of the Brandenburg University of Applied Sciences

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Fachhochschule <strong>Brandenburg</strong><br />

<strong>Brandenburg</strong> <strong>University</strong> <strong>of</strong> <strong>Applied</strong> <strong>Sciences</strong><br />

amounts up to 750°C. The emitters are characterized<br />

by a high and wavelength independent emissivity<br />

(typical 0.95 in <strong>the</strong> 2 - 14 μm range), low electrical<br />

power consumption and high electrical to infrared<br />

radiation output efficiency, an excellent long term stability<br />

and reproducibility. One <strong>of</strong> <strong>the</strong> most important<br />

benefits <strong>of</strong> <strong>the</strong>se emitters is <strong>the</strong> possibility <strong>of</strong> fast electrical<br />

modulation with a high modulation depth (typical<br />

80% at 10 Hz). A chopper wheel for radiation modulation<br />

is no longer needed.<br />

Using microscopic and high-speed <strong>the</strong>rmal imaging<br />

during emitter operation <strong>the</strong> time constant as well as<br />

<strong>the</strong> temperature distribution can be analyzed as shown<br />

in Fig. 3.20 and Fig. 3.21, respectively. The spatial temperature<br />

distribution does have an influence on <strong>the</strong><br />

angular dependence <strong>of</strong> radiance.<br />

The radiance measurements indicate a spatial tempe-<br />

Fig. 3.21: Determination <strong>of</strong> <strong>the</strong> time constant from <strong>the</strong> decay <strong>of</strong> <strong>the</strong><br />

emitter surface temperature for emitter type 1 after a 250 ms square<br />

wave electrical pulse (measurement at 600 Hz frame rate and 0.8<br />

ms integration time, spot temperature measurement in <strong>the</strong> center <strong>of</strong><br />

<strong>the</strong> emitter surface).<br />

Fig. 3.22: Visible microscope image( left) and a <strong>the</strong>rmogram (right, homogeneous temperature<br />

distribution, emissivity contrast only) <strong>of</strong> a <strong>the</strong>rmopile (with 72 <strong>the</strong>rmocouples).<br />

rature distribution across <strong>the</strong> emitting area. This behavior<br />

is caused by <strong>the</strong> construction <strong>of</strong> <strong>the</strong> miniaturized<br />

emitter. The heated area is placed on a membrane area<br />

that is connected to <strong>the</strong> silicon substrate at its border.<br />

So <strong>the</strong> heat generated in <strong>the</strong> element is transported by<br />

<strong>the</strong>rmal conduction to <strong>the</strong>se borders via <strong>the</strong> membrane<br />

material. Due to <strong>the</strong> large <strong>the</strong>rmal conductance <strong>of</strong><br />

<strong>the</strong> bulk silicon <strong>the</strong> temperature at <strong>the</strong> borders will not<br />

increase during heating <strong>the</strong> membrane. The maximum<br />

temperature is achieved at <strong>the</strong> center <strong>of</strong> <strong>the</strong> membrane.<br />

The IR image <strong>of</strong> <strong>the</strong> type 1 emitter exhibits additional<br />

lines with reduced radiance, see Fig. 3.20 c (left).<br />

These lines are also visible in <strong>the</strong> microscopic image,<br />

see Fig. 3.19 and are <strong>the</strong> contact lines for current supply<br />

to <strong>the</strong> emitter. Due to <strong>the</strong> metal used for establishing<br />

<strong>the</strong>se contact lines <strong>the</strong> emissivity and <strong>the</strong>refore<br />

<strong>the</strong> emitted radiance is reduced.<br />

A time constant <strong>of</strong> � = 32 ms is determined from <strong>the</strong><br />

measurement <strong>of</strong> temperature decay <strong>of</strong> <strong>the</strong> emitter surface<br />

temperature during voltage pulsed operation <strong>of</strong><br />

<strong>the</strong> IR-emitter, see Fig. 3.21. The emitter represents a<br />

low frequency pass and can be characterized by <strong>the</strong><br />

frequency f = 5 Hz for a �� = 1 operation.<br />

Characterization <strong>of</strong> Infrared Thermopile<br />

Sensors<br />

Radiation <strong>the</strong>rmocouples are probably <strong>the</strong> oldest<br />

infrared detectors [6]. They utilize <strong>the</strong> Seebeck-effect<br />

[7] for signal generation and consist <strong>of</strong> alternate junctions<br />

<strong>of</strong> two different materials. Alternate junctions<br />

are defined as “hot” and “cold” junctions. For a temperature<br />

difference between <strong>the</strong> alternate junctions a<br />

voltage is generated proportional to <strong>the</strong> temperature<br />

difference. To increase <strong>the</strong>ir voltage responsivity individual<br />

<strong>the</strong>rmocouples are <strong>of</strong>ten connected in <strong>the</strong>rmopiles.<br />

Thermopiles exhibit lower<br />

responsivities compared to o<strong>the</strong>r<br />

<strong>the</strong>rmal detectors as bolometers<br />

or pyroelectric detectors. However<br />

<strong>the</strong>rmopiles do not require a bias<br />

for operation and exhibit low<br />

noise at low frequencies. Thermopiles<br />

are frequently used as infrared<br />

sensors in pyrometers because<br />

<strong>of</strong> <strong>the</strong>ir excellent properties in<br />

DC operation not requiring tempe-<br />

rature stabilization in contrast to<br />

bolometers.<br />

86 Forschungsbericht <strong>Research</strong> Report 2007 – 2010

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!