17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 91<br />

A7 : We have Eǫt4+2ν < ∞ and ν<br />

∞<br />

k=0 {αǫ(k)} 2+ν < ∞ for some ν > 0.<br />

The reader is referred to Boubacar Mainassara and Francq (2009) for a discussion<br />

of these assumptions. Note that (ǫt) can be replaced by (Xt) in A4, because<br />

Xt = A −1<br />

θ0 (L)Bθ0(L)ǫt and ǫt = B −1<br />

θ0 (L)Aθ0(L)Xt, where L stands for the backward<br />

operator. Note that from A1 the matrices A0 and B0 are invertible. Introducing the<br />

innovation process <strong>et</strong> = A −1<br />

00B00ǫt, the structural representation Aθ0(L)Xt = Bθ0(L)ǫt<br />

can be rewritten as the reduced V<strong>ARMA</strong> representation<br />

Xt −<br />

p<br />

i=1<br />

A −1<br />

00A0iXt−i = <strong>et</strong> −<br />

q<br />

i=1<br />

We thus recursively define ˜<strong>et</strong>(θ) for t = 1,...,n by<br />

˜<strong>et</strong>(θ) = Xt −<br />

p<br />

i=1<br />

A −1<br />

0 AiXt−i +<br />

q<br />

i=1<br />

A −1<br />

00B0iB −1<br />

00 A00<strong>et</strong>−i.<br />

A −1<br />

0 BiB −1<br />

0 A0˜<strong>et</strong>−i(θ),<br />

with initial values ˜e0(θ) = ··· = ˜e1−q(θ) = X0 = ··· = X1−p = 0. The gaussian<br />

quasi-likelihood is given by<br />

n 1<br />

Ln(θ,Σe) =<br />

(2π) d/2√ <br />

exp −<br />

d<strong>et</strong>Σe<br />

1<br />

2 ˜e′ t (θ)Σ−1 e ˜<strong>et</strong>(θ)<br />

<br />

, Σe = A −1<br />

0 B0ΣB ′ 0A−1′ 0 .<br />

t=1<br />

A quasi-maximum likelihood estimator (QMLE) of θ and Σe is a measurable solution<br />

( ˆ θn, ˆ Σe) of<br />

( ˆ θn, ˆ Σe) = arg max Ln(θ,Σe).<br />

θ∈Θ,Σe<br />

We now use the matrix Mθ0 of the coefficients of the reduced form to that made by<br />

Boubacar Mainassara and Francq (2009), where<br />

Mθ0 = [A −1<br />

00A01 : ... : A −1<br />

00A0p : A −1 −1<br />

00B01B00 A00 : ... : A −1 −1<br />

00B0qB00 A00].<br />

Now we need an assumption which specifies how this matrix depends on the param<strong>et</strong>er<br />

<br />

θ0. L<strong>et</strong> Mθ0 be the matrix ∂vec(Mθ)/∂θ ′ evaluated at θ0.<br />

A8 : The matrix <br />

Mθ0 is of full rank k0.<br />

Under Assumptions A1–A8, Boubacar Mainassara and Francq (2009) have showed the<br />

consistency ( ˆ θn → θ0 a.s. as n → ∞) and the asymptotic normality of the QMLE :<br />

√ <br />

n ˆϑn L→ −1 −1<br />

−ϑ0 N(0,Ω := J IJ ), (3.2)<br />

where J = J(θ0,Σe0) and I = I(θ0,Σe0), with<br />

and<br />

2 ∂<br />

J(θ,Σe) = lim<br />

n→∞ n<br />

2<br />

∂θ∂θ ′ logLn(θ,Σe) a.s.<br />

I(θ,Σe) = lim Var<br />

n→∞ 2 ∂<br />

√<br />

n∂θ<br />

logLn(θ,Σe). (3.3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!