17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 2. Estimating weak structural V<strong>ARMA</strong> models 84<br />

Since all these matrices have finite expectations uniformly in ϑ ∈ Θ, we have<br />

<br />

<br />

Esup <br />

∂<br />

<br />

ϑ∈Θ<br />

3 <br />

lt(ϑ) <br />

<br />

< ∞ (2.36)<br />

∂ϑk1∂ϑk2∂ϑk3<br />

for all k1,k2,k3 ∈ {1,...,k0}. Now a second Taylor expansion yields<br />

∂2ℓn(ϑ∗ i)<br />

=<br />

∂ϑi∂ϑj<br />

∂2ℓn(ϑ0) +<br />

∂ϑi∂ϑj<br />

∂<br />

∂ϑ ′<br />

2 ∂ ℓn(ϑ∗ <br />

)<br />

(ϑ<br />

∂ϑi∂ϑj<br />

∗ i −ϑ0)<br />

= ∂2ℓn(ϑ0) +o(1) a.s.<br />

∂ϑi∂ϑj<br />

using the ergodic theorem, (2.36) and the almost sure convergence of ϑ ∗ i to ϑ0. The<br />

proof is compl<strong>et</strong>e. ✷<br />

Now we need the following covariance inequality obtained by Davydov (1968). 2<br />

Lemma 11 (Davydov (1968)). L<strong>et</strong> p, q and r three positive numbers such that p −1 +<br />

q −1 +r −1 = 1. Davydov (1968) showed that<br />

|Cov(X,Y)| ≤ K0XpYq[α{σ(X),σ(Y)}] 1/r , (2.37)<br />

where X p p = EXp , K0 is an universal constant, and α{σ(X),σ(Y)} denotes the<br />

strong mixing coefficient b<strong>et</strong>ween the σ-fields σ(X) and σ(Y) generated by the random<br />

variables X and Y , respectively.<br />

Lemma 12. Under the assumptions of Theorem 2.2, (2.25) holds, that is<br />

lim<br />

m→∞ limsup<br />

<br />

<br />

P n −1/2<br />

<br />

n<br />

<br />

<br />

<br />

Zt,m<br />

> ε = 0.<br />

<br />

n→∞<br />

Proof of Lemma 12 : For i = 1,...,k0, by stationarity we have<br />

<br />

n<br />

<br />

1<br />

var √ Zt,m,i =<br />

n<br />

t=1<br />

1<br />

n<br />

Cov(Zt,m,i,Zs,m,i)<br />

n<br />

t,s=1<br />

= 1 <br />

(n−|h|)Cov(Zt,m,i,Zt−h,m,i)<br />

n<br />

Because dℓ ≤ Kρ ℓ , we have<br />

≤<br />

|Zt,m,i| ≤ K<br />

|h|

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!