17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 5. Model selection of weak V<strong>ARMA</strong> models 160<br />

with equality if and only if e1(θ) = e1(θ0) a.s. Using the elementary inequality<br />

Tr(A −1 B)−logd<strong>et</strong>(A −1 B) ≥ Tr(A −1 A)−logd<strong>et</strong>(A −1 A) = d for all symm<strong>et</strong>ric positive<br />

semi-definite matrices of order d×d, it is easy see that ∆(θ)−∆(θ0) ≥ 0. The proof is<br />

compl<strong>et</strong>e. ✷<br />

5.5.1 Estimating the discrepancy<br />

L<strong>et</strong> X = (X1,...,Xn) be observation of a process satisfying the V<strong>ARMA</strong> representation<br />

(5.1). L<strong>et</strong> ˆ θn be the QMLE of the param<strong>et</strong>er θ of a candidate V<strong>ARMA</strong> model.<br />

L<strong>et</strong>, êt = ˜<strong>et</strong>( ˆ θn) be the QMLE/LSE residuals when p > 0 or q > 0, and l<strong>et</strong> êt = <strong>et</strong> = Xt<br />

when p = q = 0. When p+q = 0, we have êt = 0 for t ≤ 0 and t > n, and<br />

êt = Xt −<br />

p<br />

i=1<br />

A −1<br />

0 (ˆ θn)Ai( ˆ θn) ˆ Xt−i +<br />

for t = 1,...,n, with ˆ Xt = 0 for t ≤ 0 and ˆ Xt = Xt for t ≥ 1.<br />

q<br />

i=1<br />

A −1<br />

0 (ˆ θn)Bi( ˆ θn)B −1<br />

0 (ˆ θn)A0( ˆ θn)êt−i,<br />

In view of Lemma 5.1, it is natural to minimize an estimation of the theor<strong>et</strong>ical<br />

criterion E∆( ˆ θn). Note that E∆( ˆ θn) can be interpr<strong>et</strong>ed as the average discrepancy<br />

when one uses the model of param<strong>et</strong>er ˆ θn. The Akaike information criterion (AIC)<br />

is an approximately unbiased estimator of E∆( ˆ θn). We will adapt to weak V<strong>ARMA</strong><br />

models the corrected AIC version (AICc) introduced by Tsai and Hurvich (1989) for the<br />

univariate strong AR models. Under Assumptions A1–A9, an approximately unbiased<br />

estimator of E∆( ˆ θn) is given by<br />

AICM = nlogd<strong>et</strong> ˆ Σe + n2d2 nd<br />

<br />

+ vec<br />

nd−k1 2(nd−k1)<br />

Î′ ′<br />

11,n vec ˆ J −1<br />

<br />

11,n , (5.4)<br />

with vec ˆ J11,n and vec Î11,n are defined in Section 5.2. The AICM stands for AIC "modified".<br />

Justification of (5.4). Using a Taylor expansion of the functions ∂logLn( ˆ θn)/∂θ (1)<br />

, it follows that<br />

around θ (1)<br />

0<br />

<br />

ˆθ (1)<br />

n −θ(1)<br />

<br />

1<br />

op √n<br />

0 = − 2<br />

n J−1 11<br />

∂logLn(θ0)<br />

∂θ (1)<br />

= − 2<br />

n<br />

n<br />

t=1<br />

J −1<br />

11<br />

where a c = b signifies a = b+c and where J11 = J11(θ0) with<br />

2∂<br />

J11(θ) = lim<br />

n→∞ n<br />

2logLn(θ) ∂θ (1) ∂θ (1)′ a.s.<br />

∂e ′ t(θ0)<br />

Σ−1<br />

∂θ (1) e0 <strong>et</strong>(θ0), (5.5)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!