17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 107<br />

The proof is compl<strong>et</strong>e. ✷<br />

Proof of Theorem 3.2. L<strong>et</strong> the matrices<br />

<br />

ˆΛij = Id ⊗ ˆ λ ′ <br />

i ⊗ Id ⊗ ˆ λ ′ <br />

j , Λij = {Id ⊗λ ′ i}⊗ Id ⊗λ ′ <br />

j ,<br />

ˆ∆e0 =<br />

<br />

vec ˆ Σ −1<br />

<br />

e0<br />

vec ˆ Σ −1<br />

e0<br />

′ <br />

and ∆e0 =<br />

<br />

vecΣ −1<br />

e0<br />

<br />

−1 ′<br />

vecΣe0 .<br />

For any multiplicative norm, we have<br />

<br />

<br />

vecI −vec În<br />

<br />

<br />

≤ 4 <br />

Γ(i,j)−<br />

Γn(i,j) ˆ <br />

Λijvec∆e0<br />

i,j≥1<br />

<br />

<br />

+ ˆ <br />

<br />

Γn(i,j) Λij<br />

− ˆ <br />

<br />

Λijvec∆e0<br />

<br />

<br />

+ ˆ <br />

<br />

Γn(i,j) ˆ<br />

<br />

<br />

<br />

Λijvec<br />

∆e0 − ˆ <br />

∆e0 .<br />

Lemma 3.5 and λi = O(ρi ) entail<br />

<br />

<br />

vec ˆ <br />

<br />

Λij −vecΛij ≤ vec Id ⊗( ˆ λi −λi)⊗(Id ⊗ ˆ <br />

<br />

λj)<br />

<br />

<br />

+ vec (Id ⊗λi)⊗ Id ⊗( ˆ <br />

<br />

λj −λj)<br />

We also have Λij = O(ρ i+j ). In view of Lemma 3.8 and Σ −1<br />

e0<br />

<br />

<br />

ˆ ∆e0 −∆e0<br />

≤ Kρ i+j ×oa.s(1).<br />

<br />

< ∞, we have<br />

<br />

<br />

≤ vec ˆΣ −1<br />

e0 −Σ−1<br />

<br />

<br />

e0 vec ˆ Σ −1<br />

<br />

′ <br />

e0<br />

+ <br />

<br />

<br />

−1<br />

vecΣ <br />

e0 vec ˆΣ −1<br />

e0 −Σ −1<br />

<br />

′ <br />

e0 → 0 a.s.<br />

In the univariate case Francq, Roy and Zakoïan (2005) showed (see the proofs of their<br />

Lemmas A.1 and A.3) that sup ℓ,ℓ ′ >0|Γ(ℓ,ℓ ′ )| < ∞. This can be directly extended in the<br />

multivariate case. The non zero elements of Γ(i,j) are of the form<br />

∞<br />

h=−∞<br />

We thus have<br />

<br />

<br />

<br />

sup <br />

<br />

i,j≥1<br />

E(ei1 tei2 t−iei3 t−hei4 t−h−j), for (i1,i2,i3,i4) ∈ {1,...,d} 4 .<br />

∞<br />

h=−∞<br />

E(ei1 tei2 t−iei3 t−hei4 t−h−j)<br />

<br />

<br />

<br />

<br />

<br />

≤ sup Γ(i,j) < ∞. (3.19)<br />

i,j≥1<br />

We then deduce that sup i,j≥1Γ(i,j) = O(1). The proof will thus follow from Lemma<br />

3.9 below, in which we show the consistency of ˆ Γn(i,j) uniformly in i and j. ✷

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!