17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 116<br />

where<br />

which entails that<br />

Thus we have<br />

Iij,h(1) = Ee1t−he1t−j−he1te1t−iσ −4<br />

11 α i−1<br />

01 α j−1<br />

01 ,<br />

Iij,h(2) = Ee1t−he1t−j−he1te2t−iσ −4<br />

11 αi−1<br />

01 αj−1<br />

02 ,<br />

Iij,h(3) = Ee1t−he1t−j−he2te1t−iσ −2<br />

11 σ −2<br />

22 α i−1<br />

01 α j−1<br />

01 ,<br />

Iij,h(4) = Ee1t−he1t−j−he2te2t−iσ −2<br />

11 σ−2<br />

22 αi−1<br />

01 αj−1<br />

02 ,<br />

Iij,h(5) = Ee1t−he2t−j−he1te1t−iσ −4<br />

11 α i−1<br />

02 α j−1<br />

01 ,<br />

Iij,h(6) = Ee1t−he2t−j−he1te2t−iσ −4<br />

11 αi−1<br />

02 αj−1<br />

02 ,<br />

Iij,h(7) = Ee1t−he2t−j−he2te1t−iσ −2<br />

11 σ −2<br />

22 α i−1<br />

02 α j−1<br />

01 ,<br />

Iij,h(8) = Ee1t−he2t−j−he2te2t−iσ −2<br />

11 σ−2<br />

22 αi−1<br />

02 αj−1<br />

02 ,<br />

Iij,h(9) = Ee2t−he1t−j−he1te1t−iσ −2<br />

11 σ−2<br />

22 αi−1<br />

01 αj−1<br />

01 ,<br />

Iij,h(10) = Ee2t−he1t−j−he1te2t−iσ −2<br />

11 σ−2 22 αi−1 01 αj−1 02 ,<br />

Iij,h(11) = Ee2t−he1t−j−he2te1t−iσ −4<br />

22 αi−1 01 αj−1 01 ,<br />

Iij,h(12) = Ee2t−he1t−j−he2te2t−iσ −4<br />

22 αi−1 01 αj−1 02 ,<br />

Iij,h(13) = Ee2t−he2t−j−he1te1t−iσ −2<br />

11 σ−2 22 αi−1 02 αj−1 01 ,<br />

Iij,h(14) = Ee2t−he2t−j−he1te2t−iσ −2<br />

11 σ −2<br />

22 α i−1<br />

02 α j−1<br />

02 ,<br />

Iij,h(15) = Ee2t−he2t−j−he2te1t−iσ −4<br />

22 αi−1 02 αj−1 01 ,<br />

Iij,h(16) = Ee2t−he2t−j−he2te2t−iσ −4<br />

22 α i−1<br />

02 α j−1<br />

02 ,<br />

I = 4<br />

+∞<br />

vecI = 4<br />

+∞<br />

i,j=1 h=−∞<br />

⎛<br />

⎜<br />

⎝<br />

+∞<br />

+∞<br />

i,j=1 h=−∞<br />

(Iij,h(1),...,Iij,h(16)) ′ .<br />

Iij,h(1) Iij,h(5) Iij,h(9) Iij,h(13)<br />

Iij,h(2) Iij,h(6) Iij,h(10) Iij,h(14)<br />

Iij,h(3) Iij,h(7) Iij,h(11) Iij,h(15)<br />

Iij,h(4) Iij,h(8) Iij,h(12) Iij,h(16)<br />

In the particular case where <strong>et</strong> is a martingale difference, the expression of I simplifies.<br />

We then have<br />

Iij,h(2) = ··· = Iij,h(5) = Iij,h(7) = ··· = Iij,h(10) = Iij,h(12) = ··· = Iij,h(15) = 0<br />

and for h = 0, when i = j we have<br />

Iii,0(1) = Ee 2 1t e2 1t−i σ−4<br />

11 α2(i−1)<br />

01 , Iii,0(6) = Ee 2 1t e2 2t−i σ−4<br />

11 α2(i−1)<br />

02 ,<br />

Iii,0(11) = Ee 2 2t e2 1t−i σ−4<br />

22 α2(i−1)<br />

01 , Iii,0(16) = Ee 2 2t e2 2t−i σ−4<br />

22 α2(i−1)<br />

02 ,<br />

⎞<br />

⎟<br />

⎠ .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!