17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapitre 2. Estimating weak structural V<strong>ARMA</strong> models 59<br />

The structural form (2.2) allows to handle seasonal models, instantaneous economic<br />

relationships, V<strong>ARMA</strong> in the so-called echelon form representation, and many other<br />

constrained V<strong>ARMA</strong> representations.<br />

Example 2.1. Assume that income (Inc) and consumption (Cons) variables are related<br />

by the equations Inct = c1 + α01 Inct−1 + α02 Const−1 + ǫ1t and Const =<br />

c2 + α03 Inct + α04 Inct−1 + α05 Const−1 + ǫ2t. In the stationary case the process<br />

Xt = {Inct −E(Inct),Const −E(Const)} ′ satisfies a structural VAR(1) equation<br />

<br />

1 0 α01 α02<br />

Xt = Xt−1 +ǫt.<br />

−α03 1<br />

α04 α05<br />

We also assume that the two components of ǫt correspond to uncorrelated structural<br />

economic shocks, with respective variances σ2 01 and σ2 02 . We thus have<br />

α1α3 +α4 α2α3 +α5<br />

ϑ ′ 0 = (α01,α02,α03,α04,α05,σ 2 01,σ 2 02).<br />

Note that the identifiability condition A5 is satisfied because for all ϑ =<br />

(α1,α2,α3,α4,α5,σ 2 1 ,σ2 2 )′ = ϑ0 we have<br />

<br />

<br />

<br />

α1 α2<br />

α01 α02<br />

I2 −<br />

z = I2 −<br />

z<br />

for some z ∈ C, or<br />

<br />

2 σ1 σ2 1α3 σ2 1α3 σ2 1α2 3 +σ2 2<br />

<br />

=<br />

α01α03 +α04 α02α03 +α05<br />

σ2 01 σ2 01α03 σ2 01α03 σ2 01α2 03 +σ2 02<br />

2.3 Quasi-maximum likelihood estimation<br />

L<strong>et</strong> X1,...,Xn be observations of a process satisfying the V<strong>ARMA</strong> representation<br />

(2.2). Note that from A2 the matrices A00 and B00 are invertible. Introducing the<br />

innovation process<br />

<strong>et</strong> = A −1<br />

00B00ǫt,<br />

the structural representation Aϑ0(L)Xt = Bϑ0(L)ǫt can be rewritten as the reduced<br />

V<strong>ARMA</strong> representation<br />

Xt −<br />

p<br />

i=1<br />

A −1<br />

00 A0iXt−i = <strong>et</strong> −<br />

For all ϑ ∈ Θ, we recursively define ˜<strong>et</strong>(ϑ) for t = 1,...,n by<br />

˜<strong>et</strong>(ϑ) = Xt −<br />

p<br />

i=1<br />

A −1<br />

0 AiXt−i +<br />

q<br />

i=1<br />

q<br />

i=1<br />

<br />

.<br />

A −1 −1<br />

00B0iB00 A00<strong>et</strong>−i. (2.3)<br />

A −1<br />

0 BiB −1<br />

0 A0˜<strong>et</strong>−i(ϑ),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!