17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapitre 5. Model selection of weak V<strong>ARMA</strong> models 158<br />

to the observations, where θm is a km-dimensional param<strong>et</strong>er. The discrepancy b<strong>et</strong>ween<br />

the candidate and the true models can be measured by the Kullback-Leibler divergence<br />

(or information)<br />

∆{fm(·,θm)|f0} = Ef0 log<br />

where<br />

<br />

d{fm(·,θm)|f0} = −2Ef0logfm(X,θm) = −2<br />

f0(X)<br />

fm(X,θm) = Ef0 logf0(X)+ 1<br />

2 d{fm(·,θm)|f0},<br />

{logfm(x,θm)}f0(x)µ(dx)<br />

is som<strong>et</strong>imes called the Kullback-Leibler contrast (or the discrepancy b<strong>et</strong>ween the approximating<br />

and the true models). Using the Jensen inequality, we have<br />

<br />

∆{fm(·,θm)|f0} = − log fm(x,θm)<br />

f0(x)µ(dx)<br />

f0(x)<br />

<br />

fm(x,θm)<br />

≥ −log f0(x)µ(dx) = 0,<br />

f0(x)<br />

with equality if and only if fm(·,θm) = f0. This is the main property of the Kullback-<br />

Leibler divergence. Minimizing ∆{fm(·,θm)|f0} with respect to fm(·,θm) is equivalent<br />

to minimizing the contrast d{fm(·,θm)|f0}. L<strong>et</strong><br />

θ0,m = arginfd{fm(·,θm)|f0}<br />

= arginf−2Elogfm(X,θm)<br />

θm<br />

θm<br />

be an optimal param<strong>et</strong>er for the model m corresponding to the density fm(·,θm) (assuming<br />

that such a param<strong>et</strong>er exists). We estimate this optimal param<strong>et</strong>er by QMLE<br />

ˆθn,m.<br />

5.5 Criteria for V<strong>ARMA</strong> order selection<br />

L<strong>et</strong><br />

˜ℓn(θ) = − 2<br />

n log˜ Ln(θ)<br />

= 1<br />

n <br />

dlog(2π)+logd<strong>et</strong>Σe + ˜e<br />

n<br />

′ t(θ)Σ −1<br />

e ˜<strong>et</strong>(θ) .<br />

t=1<br />

In Boubacar Mainassara and Francq (2009), it is shown that ℓn(θ) = ˜ ℓn(θ) +o(1) a.s,<br />

where<br />

ℓn(θ) = − 2<br />

n logLn(θ)<br />

= 1<br />

n <br />

dlog(2π)+logd<strong>et</strong>Σe +e<br />

n<br />

′ t (θ)Σ−1 e <strong>et</strong>(θ) ,<br />

t=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!