17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 92<br />

3.3 Expression for the derivatives of the V<strong>ARMA</strong> residuals<br />

The reduced V<strong>ARMA</strong> representation can be rewritten under the compact form<br />

Aθ(L)Xt = Bθ(L)<strong>et</strong>(θ),<br />

whereAθ(L) = Id− p<br />

i=1 AiL i andBθ(L) = Id− q<br />

i=1 BiL i , withAi = A −1<br />

0 Ai andBi =<br />

A −1<br />

0 BiB −1<br />

0 A0. For ℓ = 1,...,p and ℓ ′ = 1,...,q, l<strong>et</strong> Aℓ = (aij,ℓ), Bℓ ′ = (bij,ℓ ′), aℓ =<br />

vec[Aℓ] and bℓ ′ = vec[Bℓ ′]. We denote respectively by<br />

a := (a ′ 1 ,...,a′ p )′<br />

and b := (b ′ 1 ,...,b′ q )′ ,<br />

the coefficients of the multivariate AR and MA parts. Thus we can rewrite θ = (a ′ ,b ′ ) ′ ,<br />

where a ∈ R k1 depends on A0,...,Ap, and where b ∈ R k2 depends on B0,...,Bq, with<br />

k1 + k2 = k0. For i,j = 1,...,d, l<strong>et</strong> Mij(L) and Nij(L) the (d×d)−matrix operators<br />

defined by<br />

Mij(L) = B −1 −1<br />

θ (L)EijAθ (L)Bθ(L) and Nij(L) = B −1<br />

θ (L)Eij,<br />

where Eij is the d×d matrix with 1 at position (i,j) and 0 elsewhere. We denote by<br />

A∗ ij,h and B∗ij,h the (d×d) matrices defined by<br />

Mij(z) =<br />

∞<br />

A ∗ ij,hzh , Nij(z) =<br />

h=0<br />

∞<br />

B ∗ ij,hzh , |z| ≤ 1<br />

for h ≥ 0. Take A∗ ij,h = B∗ij,h = 0 when h < 0. L<strong>et</strong> respectively A∗h =<br />

<br />

∗ A11,h : A∗ 21,h : ... : A∗ <br />

∗<br />

dd,h and Bh = B∗ 11,h : B∗21,h : ... : B∗ <br />

3<br />

dd,h the d × d matrices.<br />

We consider the white noise "empirical" autocovariances<br />

Γe(h) = 1<br />

n<br />

For k,k ′ ,m,m ′ = 1,...,∞, l<strong>et</strong><br />

and<br />

Γ(k,k ′ ) =<br />

∞<br />

h=−∞<br />

n<br />

t=h+1<br />

h=0<br />

Γm,m ′ = (Γ(k,k′ ))1≤k≤m,1≤k ′ ≤m ′ =<br />

<strong>et</strong>e ′ t−h , for 0 ≤ h < n.<br />

E {<strong>et</strong>−k ⊗<strong>et</strong>}{<strong>et</strong>−h−k ′ ⊗<strong>et</strong>−h} ′ ,<br />

∞<br />

h=−∞<br />

where Υt = (e ′ t−1 ,...,e′ t−m )′ ⊗<strong>et</strong>. L<strong>et</strong> the d×d 3 (p+q) matrix<br />

Cov(Υt,Υt−h)<br />

λh(θ) = −A ∗ h−1 : ... : −A∗ h−p : B∗ h−1 : ... : B∗ h−q<br />

. (3.4)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!